Top Viewed
- User statistics ranking in the last month (excluding this month)
- User statistics ranking within half a year (excluding this month)
- User statistics ranking within one year (excluding this month)
- User statistics ranking within two years (excluding this month)
- User statistics ranking within three years (excluding this month)
A newly recorded drought-tolerant terrestrial cyanobacterium,
The transformation of plants from vegetative to reproductive growth is the key to flowering and development.Flowering at the right time is important for plant growth and inheritance.Control of flowering time also plays a crucial role in the development of agricultural production.Plant flowering molecular regulation is a complex synergistic regulation of endogenous and exogenous factors.In recent years,research on flowering control of different plants,especially Arabidopsis thaliana(L.) Heynh.,has made remarkable progress.The mechanism of flowering control mainly involves six major pathways,including the photoperiodic,vernalization,autonomous,temperature,gibberellin,and age pathways.A variety of genetic control channels that are independent and interrelated form a complex flowering network.Here we focused on the latest research progress on the functions of newly identified genes underlying plant flowering.This paper could help to further understand the molecular mechanisms involved in the transition from vegetative to reproductive growth in plants.
Flooding stress constitutes a major abiotic challenge in agricultural production. Flooding stress, including waterlogging and submergence, inhibits plant growth and development through hypoxia, ion toxicity, and energy deficits. As such, plants have evolved various adaptive responses and mechanisms to counter flooding stress under diverse ecological conditions. This review discusses the detrimental effects of flooding stress on plants, as well as the morphological diversity and molecular mechanisms associated with plant adaptation to flooding stress. The genetic strategies for improving plant resistance to flooding stress are also discussed. This review aims to provide guidance for future research into the mechanisms of plant resistance to flooding stress and flooding stress-resistant crop breeding.
Plant leaves represent an important interface between a plant and the surrounding environment, and their functional traits are influenced by the external environment and phylogeny. Elucidating variations in leaf functional traits in different environments is crucial to understand plant adaptation. In this paper, the types and functional significance of the functional traits of leaves are summarized. Related studies on the two main factors affecting the functional traits of leaves (environmental factors and phylogenetic history), as well as involvement in plant adaptation, are also discussed. Finally, we propose prospective research directions based on the current situation and future tendency of leaf functional trait studies.
- First
- Prev
- 1
- 2
- 3
- 4
- 5
- Next
- Last
- Total 20 Pages
- To
- Go