Citation: | Su QY,Zhong CH,Xu YP,Liu DJ,Li L. Research progress on spray-induced gene silencing technology in the field of plant fungaldisease control[J]. Plant Science Journal,2025,43(1):134−142. DOI: 10.11913/PSJ.2095-0837.24062 |
Spray-induced gene silencing (SIGS) is an innovative and sustainable plant disease control technology that leverages the mechanisms of plant-pathogen molecular interactions and cross-kingdom RNA interference (RNAi). By applying nucleic acid reagents designed to target and silence pathogenic genes onto plant surfaces, SIGS enhances plant resistance to pathogens. This technology offers several advantages, including high specificity, exceptional prevention efficiency, environmental compatibility, and simple development. SIGS holds the potential to significantly reduce reliance on chemical fungicides, representing strategic advancement for sustainable agriculture. This paper elucidates the underlying principles of SIGS technology, summarizes the recent applications of SIGS in plant fungal disease control, introduces various delivery systems that enhance its efficiency, and discusses current challenges and future prospects for its broader implementation.
[1] |
Mann CWG,Sawyer A,Gardiner DM,Mitter N,Carroll BJ,et al. RNA-based control of fungal pathogens in plants[J]. Int J Mol Sci,2023,24(15):12391. doi: 10.3390/ijms241512391
|
[2] |
Baulcombe DC. VIGS,HIGS and FIGS:small RNA silencing in the interactions of viruses or filamentous organisms with their plant hosts[J]. Curr Opin Plant Biol,2015,26:141−146. doi: 10.1016/j.pbi.2015.06.007
|
[3] |
Kamath RS,Martinez-Campos M,Zipperlen P,Fraser AG,Ahringer J. Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans[J]. Genome Biol,2000,2(1):research0002.1. doi: 10.1186/gb-2000-2-1-research0002
|
[4] |
He BY,Cai Q,Qiao LL,Hang CY,Wang SM,et al. RNA-binding proteins contribute to small RNA loading in plant extracellular vesicles[J]. Nat Plants,2021,7(3):342−352. doi: 10.1038/s41477-021-00863-8
|
[5] |
Weiberg A,Wang M,Lin FM,Zhao HW,Zhang ZH,et al. Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways[J]. Science,2013,342(6154):118−123.
|
[6] |
Hammond SM,Caudy AA,Hannon GJ. Post-transcriptional gene silencing by double-stranded RNA[J]. Nat Rev Genet,2001,2(2):110−119. doi: 10.1038/35052556
|
[7] |
Devers EA,Brosnan CA,Sarazin A. Albertini D,Amsler AC,et al. Movement and differential consumption of short interfering RNA duplexes underlie mobile RNA interference[J]. Nat Plants,2020,6(7):789−799. doi: 10.1038/s41477-020-0687-2
|
[8] |
Hoang BTL,Fletcher SJ,Brosnan CA,Ghodke AB,Manzie N,Mitter N. RNAi as a foliar spray:efficiency and challenges to field applications[J]. Int J Mol Sci,2022,23(12):6639. doi: 10.3390/ijms23126639
|
[9] |
Mumbanza FM,Kiggundu A,Tusiime G,Tushemereirwe WK,Niblett C,Bailey A. In vitro antifungal activity of synthetic dsRNA molecules against two pathogens of banana,Fusarium oxysporum f. sp. cubense and Mycosphaerella fijiensis[J]. Pest Manag Sci,2013,69(10):1155−1162. doi: 10.1002/ps.3480
|
[10] |
Forster H,Shuai B. Exogenous siRNAs against chitin synthase gene suppress the growth of the pathogenic fungus Macrophomina phaseolina[J]. Mycologia,2020,112(4):699−710. doi: 10.1080/00275514.2020.1753467
|
[11] |
王妍,郭依,汪汉成,蔡刘体,安梦楠,等. dsRNA-endoPGs和dsRNA-RMK1介导的RNAi对烟草靶斑病的抑制作用[J]. 烟草科技,2023,56(12):1−6.
Wang Y,Guo Y,Wang HC,Cai LT,An MN,et al. Inhibition effects of RNAi mediated by dsRNA-endoPGs and dsRNA-RMK1 on tobacco target spot disease[J]. Tobacco Science & Technology,2023,56(12):1−6.
|
[12] |
郗奕滔,龙熙平,严靖婷,宋苗,林春花,缪卫国. 逞罗炭疽菌CsSCS7基因功能分析[C]//中国植物病理学会2023年学术年会论文集. 泰安:中国植物病理学会,2023:1.
|
[13] |
Song LY,Zhong RR,Guan ZZ,Huang LN,Wang GL,et al. Molecular characterization of the first Partitivirus from a causal agent of Salvia miltiorrhiza dry rot[J]. J Fungi (Basel),2024,10(3):179. doi: 10.3390/jof10030179
|
[14] |
Ouyang SQ,Ji HM,Feng T,Luo SJ,Cheng L,Wang N. Artificial trans-kingdom RNAi of FolRDR1 is a potential strategy to control tomato wilt disease[J]. PLoS Pathog,2023,19(6):e1011463. doi: 10.1371/journal.ppat.1011463
|
[15] |
Gu J,Sun JW,Liu N,Sun XZ,Liu CJ,et al. A novel cysteine-rich receptor-like kinase gene,TaCRK2,contributes to leaf rust resistance in wheat[J]. Mol Plant Pathol,2020,21(5):732−746. doi: 10.1111/mpp.12929
|
[16] |
Koch A,Kumar N,Weber L,Keller H,Imani J,Kogel KH. Host-induced gene silencing of cytochrome P450 lanosterol C14α-demethylase-encoding genes confers strong resistance to Fusarium species[J]. Proc Natl Acad Sci USA,2013,110(48):19324−19329 doi: 10.1073/pnas.1306373110
|
[17] |
Cheng W,Song XS,Li HP,Cao LH,Sun K,et al. Host-induced gene silencing of an essential chitin synthase gene confers durable resistance to Fusarium head blight and seedling blight in wheat[J]. Plant Biotechnol J,2015,13(9):1335−1345. doi: 10.1111/pbi.12352
|
[18] |
Pareek M,Rajam MV. RNAi-mediated silencing of MAP kinase signalling genes (Fmk1,Hog1,and Pbs2) in Fusarium oxysporum reduces pathogenesis on tomato plants[J]. Fungal Biol,2017,121(9):775−784 doi: 10.1016/j.funbio.2017.05.005
|
[19] |
Yang P,Yi SY,Nian JN,Yuan QS,He WJ,et al. Application of double-strand RNAs targeting chitin synthase,glucan synthase,and protein kinase reduces Fusarium graminearum spreading in wheat[J]. Front Microbiol,2021,12:660976. doi: 10.3389/fmicb.2021.660976
|
[20] |
Alba LL,Alejandra VF,Alejandro PG,Dolores FO. The potential of the RNAi technology,via SIGS,in the control of Botrytis cinerea in horticultural crops[EB/OL]. [2023-01-24]. https://hdl.handle.net/10630/25261
|
[21] |
Degnan RM,Shuey LS,Radford-Smith J,Gard iner DM,Carroll BJ,et al. Double-stranded RNA prevents and cures infection by rust fungi[J]. Commun Biol,2023,6(1):1234. doi: 10.1038/s42003-023-05618-z
|
[22] |
成永杰. 基因沉默方法在禾谷丝核菌基因功能研究中的应用[D]. 荆州:长江大学,2022:23.
|
[23] |
林梦兰. 辣椒疫霉RXLR效应分子HIGS和SIGS靶标的筛选[D]. 福州:福建农林大学,2020:56.
|
[24] |
效雪梅. 禾谷镰刀菌药敏性相关基因及其调控研究[D]. 南京:南京农业大学,2020:35.
|
[25] |
丁绍晨. 抑制稻瘟病菌的人工小分子RNA的筛选及机制研究[D]. 南京:南京农业大学,2020:57.
|
[26] |
成璐. 基于跨界Sly-miR398a的RNAi新型生物制剂研发与应用[D]. 扬州:扬州大学,2023:47.
|
[27] |
陈丽华. 棉花黄萎病菌糖代谢相关基因VdST和VdPT1的功能及RNAi研究[D]. 石河子:石河子大学,2023:27.
|
[28] |
Gu KX,Wei R,Sun YD,Duan XX,Gao J, et al. Point mutations of Dicer2 conferred Fusarium asiaticum resistance to RNAi-related biopesticide[J/OL]. [2023-12-24]. https://doi.org/10.1016/j.jia.2023.10.024.
|
[29] |
Tretiakova P,Voegele RT,Soloviev A,Link TI. Successful silencing of the mycotoxin synthesis gene TRI5 in Fusarium culmorum and observation of reduced virulence in VIGS and SIGS experiments[J]. Genes,2022,13(3):395. doi: 10.3390/genes13030395
|
[30] |
董振杰,麦艳娜,夏晴,马超,田修斌,等. gdo基因RNAi对小麦全蚀病菌的影响[J]. 河南农业科学,2019,48(11):105−111.
Dong ZJ,Mai YN,Xia Q,Ma C,Tian XB,et al. Effects of RNA interference of gdo on Gaeumannomyces graminis,the wheat take-all fungus[J]. Journal of Henan Agricultural Science,2019,48(11):105−111.
|
[31] |
Zhu YT,Zhao M,Li TT,Wang LZ,Liao CL,et al. Interactions between Verticillium dahliae and cotton:pathogenic mechanism and cotton resistance mechanism to Verticillium wilt[J]. Front Plant Sci,2023,14:1174281. doi: 10.3389/fpls.2023.1174281
|
[32] |
Barbara DJ,Roberts AL,Xu XM. Virulence characteristics of apple scab (Venturia inaequalis) isolates from monoculture and mixed orchards[J]. Plant Pathol,2008,57(3):552−561. doi: 10.1111/j.1365-3059.2007.01781.x
|
[33] |
Sundaresha S,Sharma S,Bairwa A,Tomar M,Kumar R,et al. Spraying of dsRNA molecules derived from Phytophthora infestans,along with nanoclay carriers as a proof of concept for developing novel protection strategy for potato late blight[J]. Pest Manag Sci,2022,78(7):3183−3192. doi: 10.1002/ps.6949
|
[34] |
Duanis-Assaf A,Galsurker O,Davydov O,Maurer D,Feygenberg O,et al. Double-stranded RNA targeting fungal ergosterol biosynthesis pathway controls Botrytis cinerea and postharvest grey mould[J]. Plant Biotechnol J,2022,20(1):226−237. doi: 10.1111/pbi.13708
|
[35] |
Niño-Sánchez J,Sambasivam PT,Sawyer A,Hamby R,Chen A,et al. BioClayTM prolongs RNA interference-mediated crop protection against Botrytis cinerea[J]. J Integr Plant Biol,2022,64(11):2187−2198. doi: 10.1111/jipb.13353
|
[36] |
Gu KX,Song XS,Xiao XM,Duan XX,Wang JX, et al. A β2-tubulin dsRNA derived from Fusarium asiaticum confers plant resistance to multiple phytopathogens and reduces fungicide resistance[J]. Pestic Biochem Physiol,2019,153:36−46.
|
[37] |
彭月,张海南,韩召军. 稻田中dsRNA的残留动态模拟分析[J]. 南京农业大学学报,2022,45(1):56−63. doi: 10.7685/jnau.202104012
Peng Y,Zhang HN,Han ZJ. Simulation analysis of dsRNA residue dynamics in paddy fields[J]. Journal of Nanjing Agricultural University,2022,45(1):56−63. doi: 10.7685/jnau.202104012
|
[38] |
Thakre N,Carver M,Paredes-Montero JR,Mondal M,Hu JH,et al. UV-LASER adjuvant-surfactant-facilitated delivery of mobile dsRNA to tomato plant vasculature and evidence of biological activity by gene knockdown in the potato psyllid[J]. Pest Manag Sci,2024,80(4):2141−2153. doi: 10.1002/ps.7952
|
[39] |
Yao XH,Fang K,Qiao K,Xiong JW,Lan JY,et al. Cooperative transcriptional regulation by ATAF1 and HY5 promotes light-induced cotyledon opening in Arabidopsis thaliana[J]. Sci Signal,2024,17(817):eadf7318. doi: 10.1126/scisignal.adf7318
|
[40] |
Wang QL,Zhuang XY,Mu JY,Deng ZB,Jiang H,et al. Delivery of therapeutic agents by nanoparticles made of grapefruit-derived lipids[J]. Nat Commun,2013,4:1867. doi: 10.1038/ncomms2886
|
[41] |
颜沁,兰驰,牛冬冬. 基于跨界RNAi防治水稻纹枯病的研究[C]//植物病理科技创新与绿色防控——中国植物病理学会2021年学术年会论文集. 贵阳:中国植物病理学会,2021:1.
|
[42] |
Balodi R,Gogoi R,Bisht S,Singh S,Singh SK. Antifungal activity of chitosan against Rhizoctonia solani f. sp. sasakii[J]. Appl Biochem Microbiol,2023,59(3):323−329. doi: 10.1134/S000368382303002X
|
[43] |
Kostov K,Andonova-Lilova B,Smagghe G. Inhibitory activity of carbon quantum dots against Phytophthora infestans and fungal plant pathogens and their effect on dsRNA-induced gene silencing[J]. Biotechnol Biotechnol Equip,2022,36(1):949−959. doi: 10.1080/13102818.2022.2146533
|
[44] |
Wang YX,Li MS,Ying JH,Shen J,Dou DL,et al. High-efficiency green management of potato late blight by a self-assembled multicomponent nano-bioprotectant[J]. Nat Commun,2023,14(1):5622. doi: 10.1038/s41467-023-41447-8
|
[45] |
Geng KX,Zhang Y,Zhao X,Zhang WL,Guo XH,et al. Fluorescent nanoparticle-RNAi-mediated silencing of sterol carrier protein-2 gene expression suppresses the growth,development,and reproduction of Helicoverpa armigera[J]. Nanomaterials,2023,13(2):245. doi: 10.3390/nano13020245
|
[46] |
Jain RG,Fletcher SJ,Manzie N,Robinson KE,Li P,et al. Foliar application of clay-delivered RNA interference for whitefly control[J]. Nat Plants,2022,8(5):535−548. doi: 10.1038/s41477-022-01152-8
|
[47] |
Li MS,Sun XW,Yin MZ,Shen J,Yan S. Recent advances in nanoparticle-mediated co-delivery system:a promising strategy in medical and agricultural field[J]. Int J Mol Sci,2023,24(6):5121. doi: 10.3390/ijms24065121
|
[48] |
Vigneswari S,Amelia TSM,Hazwan MH,Mouriya GK,Bhubalan K,et al. Transformation of biowaste for medical applications:incorporation of biologically derived silver nanoparticles as antimicrobial coating[J]. Antibiotics,2021,10(3):229. doi: 10.3390/antibiotics10030229
|
[49] |
Chaud M,Souto EB,Zielinska A,Severino P,Batain F,et al. Nanopesticides in agriculture:benefits and challenge in agricultural productivity[J]. Toxics,2021,9(6):131. doi: 10.3390/toxics9060131
|
[50] |
Fang RH,Gao WW,Zhang LF. Targeting drugs to tumours using cell membrane-coated nanoparticles[J]. Nat Rev Clin Oncol,2023,20(1):33−48. doi: 10.1038/s41571-022-00699-x
|
[51] |
Zhu KY,Palli SR. Mechanisms,applications,and challenges of insect RNA interference[J]. Annu Rev Entomol,2020,65(1):293−311. doi: 10.1146/annurev-ento-011019-025224
|
[52] |
Mamta B,Rajam MV. RNAi technology:a new platform for crop pest control[J]. Physiol Mol Biol Plants,2017,23(3):487−501. doi: 10.1007/s12298-017-0443-x
|
[53] |
Mujtaba M,Wang DP,Carvalho LB,Oliveira JL,do Espirito Santo Pereira A,et al. Nanocarrier-mediated delivery of miRNA,RNAi,and CRISPR-Cas for plant protection:current trends and future directions[J]. ACS Agric Sci Technol,2021,1(5):417−435. doi: 10.1021/acsagscitech.1c00146
|
[54] |
Pan XH,Nie DY,Guo XP,Xu SS,Zhang DY,et al. Effective control of the tomato wilt pathogen using TiO2 nanoparticles as a green nanopesticide[J]. Environ Sci:Nano,2023,10(5):1441−1452.
|
[55] |
Huang WL,Wang MJ,Hu ZX,Yang TZ,Pei HL,Zhang F. Multifunctional metal-organic framework with pH-response for co-delivery of prochloraz and siRNA to synergistic control pathogenic fungi[J]. Colloids Surf A:Physicochem Eng Asp,2023,670:131563. doi: 10.1016/j.colsurfa.2023.131563
|
[56] |
Islam MT,Davis Z,Chen LS,Englaender J,Zomorodi S,et al. Minicell-based fungal RNAi delivery for sustainable crop protection[J]. Microb Biotechnol,2021,14(4):1847−1856. doi: 10.1111/1751-7915.13699
|
[57] |
Feng K,Li W,Tang XY,Luo J,Tang F. Termicin silencing enhances the toxicity of Serratia marcescens Bizio (SM1) to Odontotermes formosanus (Shiraki)[J]. Pestic Biochem Physiol,2022,185:105120. doi: 10.1016/j.pestbp.2022.105120
|
[58] |
Qiao LL,Lan C,Capriotti L,Ah-Fong A,Nino Sanchez J,et al. Spray-induced gene silencing for disease control is dependent on the efficiency of pathogen RNA uptake[J]. Plant Biotechnol J,2021,19(9):1756−1768. doi: 10.1111/pbi.13589
|
[59] |
Gebremichael DE,Haile ZM,Negrini F,Sabbadini S,Capriotti L,et al. RNA interference strategies for future management of plant pathogenic fungi:prospects and challenges[J]. Plants (Basel),2021,10(4):650. doi: 10.3390/plants10040650
|