Advance Search
Zhang YL,Wu YM,Liu YF,Hu ZG,Gou JB. Recent progress in medicinal plant transformation and genome editing[J]. Plant Science Journal,2024,42(2):242−253. DOI: 10.11913/PSJ.2095-0837.23186
Citation: Zhang YL,Wu YM,Liu YF,Hu ZG,Gou JB. Recent progress in medicinal plant transformation and genome editing[J]. Plant Science Journal,2024,42(2):242−253. DOI: 10.11913/PSJ.2095-0837.23186

Recent progress in medicinal plant transformation and genome editing

More Information
  • Received Date: June 25, 2023
  • Accepted Date: August 15, 2023
  • In the post-genomic era, both plant genetic transformation and genome editing have emerged as critical tools for gene function research. Plant genetic transformation has evolved from methods requiring tissue culture to new approaches that bypass tissue culture entirely. Furthermore, gene editing technology has advanced from initial techniques of targeted gene segment modification and repair to more sophisticated strategies, such as precise nucleotide substitution and targeted insertion, deletion, and segment editing at specific sites without the need for cutting. Recent advancements in both plant genetic transformation and genome editing have significantly accelerated the field of plant biotechnology. In the present paper, we review recent progress on plant genetic transformation and genome editing technologies, as well as their applications in medicinal plants, providing insights into gene function analysis and molecular breeding strategies for medicinal plants.

  • [1]
    Huang LQ. Chinese government in push for sustainable traditional medicine resources[EB/OL]. [2023-01-08]. https://www.nature.com/articles/d42473-020-00001-6.
    [2]
    李杰,蔡嘉慧,王慧中,孟一君. 药用植物基因组测序及功能基因组学研究进展[J]. 杭州师范大学学报(自然科学版),2021,20(4):364−373.

    Li J,Cai JH,Wang HZ,Meng YJ. Advances in genome sequencing and functional genomics of medicinal plants[J]. Journal of Hangzhou Normal University (Natural Science Edition),2021,20(4):364−373.
    [3]
    Thompson MG,Moore WM,Hummel NFC,Pearson AN,Barnum CR,et al. Agrobacterium tumefaciens:a bacterium primed for synthetic biology[J]. Biodes Res,2020,2020:8189219. doi: 10.34133/2020/8189219
    [4]
    Valvekens D,van Montagu M,van Lijsebettens M. Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection[J]. Proc Natl Acad Sci USA,1988,85(15):5536−5540. doi: 10.1073/pnas.85.15.5536
    [5]
    Li JF,Park E,von Arnim AG,Nebenführ A. The FAST technique:a simplified Agrobacterium-based transformation method for transient gene expression analysis in seedlings of Arabidopsis and other plant species[J]. Plant Methods,2009,5(1):6. doi: 10.1186/1746-4811-5-6
    [6]
    Aliu E,Lee K,Wang K. CRISPR RNA-guided integrase enables high-efficiency targeted genome engineering in Agrobacterium tumefaciens[J]. Plant Biotechnol J,2022,20(10):1916−1927. doi: 10.1111/pbi.13872
    [7]
    Raman V,Rojas CM,Vasudevan B,Dunning K,Kolape J,et al. Agrobacterium expressing a type Ⅲ secretion system delivers Pseudomonas effectors into plant cells to enhance transformation[J]. Nat Commun,2022,13(1):2581. doi: 10.1038/s41467-022-30180-3
    [8]
    Klein TM,Wolf ED,Wu R,Sanford JC. High-velocity microprojectiles for delivering nucleic acids into living cells[J]. Nature,1987,327(6117):70−73. doi: 10.1038/327070a0
    [9]
    Morikawa H,Yamada Y. Capillary microinjection into protoplasts and intranuclear localization of injected materials[J]. Plant Cell Physiol,1985,26(2):229−236.
    [10]
    McCabe DE,Swain WF,Martinell BJ,Christou P. Stable transformation of soybean (Glycine max) by particle acceleration[J]. Bio Technology,1988,6(8):923−926.
    [11]
    Klein TM,Fromm M,Weissinger A,Tomes D,Schaaf S,et al. Transfer of foreign genes into intact maize cells with high-velocity microprojectiles[J]. Proc Natl Acad Sci USA,1988,85(12):4305−4309. doi: 10.1073/pnas.85.12.4305
    [12]
    Carsono N,Yoshida T. Transient expression of green fluorescent protein in rice calluses:optimization of parameters for helios gene gun device[J]. Plant Prod Sci,2008,11(1):88−95. doi: 10.1626/pps.11.88
    [13]
    Kuriakose B,Du Toit ES,Jordaan A. Transient gene expression assays in rose tissues using a Bio-Rad Helios® hand-held gene gun[J]. South Afr J Bot,2012,78:307−311. doi: 10.1016/j.sajb.2011.06.002
    [14]
    Ueki S, Magori S, Lacroix B, Citovsky V. Transient gene expression in epidermal cells of plant leaves by biolistic DNA delivery[M]//Sudowe S, Reske-Kunz AB, eds. Biolistic DNA Delivery. Totowa: Humana Press, 2013: 17-26.
    [15]
    Demirer GS,Zhang H,Matos JL,Goh NS,Cunningham FJ,et al. High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants[J]. Nat Nanotechnol,2019,14(5):456−464. doi: 10.1038/s41565-019-0382-5
    [16]
    Cunningham FJ,Goh NS,Demirer GS,Matos JL,Landry MP. Nanoparticle-mediated delivery towards advancing plant genetic engineering[J]. Trends Biotechnol,2018,36(9):882−897. doi: 10.1016/j.tibtech.2018.03.009
    [17]
    Mitter N,Worrall EA,Robinson KE,Li P,Jain RG,et al. Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses[J]. Nat Plants,2017,3(2):16207. doi: 10.1038/nplants.2016.207
    [18]
    Chang FP,Kuang LY,Huang CA,Jane WN,Hung Y,et al. A simple plant gene delivery system using mesoporous silica nanoparticles as carriers[J]. J Mater Chem B,2013,1(39):5279−5287. doi: 10.1039/c3tb20529k
    [19]
    Wang ZP,Zhang ZB,Zheng DY,Zhang TT,Li XL,et al. Efficient and genotype independent maize transformation using pollen transfected by DNA-coated magnetic nanoparticles[J]. J Integr Plant Biol,2022,64(6):1145−1156. doi: 10.1111/jipb.13263
    [20]
    Kandhol N,Singh VP,Herrera-Estrella L,Tran LSP,Tripathi DK. Nanocarrier spray:a nontransgenic approach for crop engineering[J]. Trends Plant Sci,2023,28(3):259−261. doi: 10.1016/j.tplants.2022.12.015
    [21]
    Honig A,Marton I,Rosenthal M,Smith JJ,Nicholson MG,et al. Transient expression of virally delivered meganuclease in planta generates inherited genomic deletions[J]. Mol Plant,2015,8(8):1292−1294. doi: 10.1016/j.molp.2015.04.001
    [22]
    Marton I,Zuker A,Shklarman E,Zeevi V,Tovkach A,et al. Nontransgenic genome modification in plant cells[J]. Plant Physiol,2010,154(3):1079−1087. doi: 10.1104/pp.110.164806
    [23]
    Uranga M,Vazquez-Vilar M,Orzáez D,Daròs JA. CRISPR-Cas12a genome editing at the whole-plant level using two compatible RNA virus vectors[J]. CRISPR J,2021,4(5):761−769. doi: 10.1089/crispr.2021.0049
    [24]
    Ariga H,Toki S,Ishibashi K. Potato virus X vector-mediated DNA-free genome editing in plants[J]. Plant Cell Physiol,2020,61(11):1946−1953. doi: 10.1093/pcp/pcaa123
    [25]
    Jin YD,Wang BJ,Bao MC,Li YJ,Xiao SW,et al. Development of an efficient expression system with large cargo capacity for interrogation of gene function in bamboo based on bamboo mosaic virus[J]. J Integr Plant Biol,2023,65(6):1369−1382. doi: 10.1111/jipb.13468
    [26]
    Liu Q,Zhao CL,Sun K,Deng YL,Li ZH. Engineered biocontainable RNA virus vectors for non-transgenic genome editing across crop species and genotypes[J]. Mol Plant,2023,16(3):616−631. doi: 10.1016/j.molp.2023.02.003
    [27]
    Maher MF,Nasti RA,Vollbrecht M,Starker CG,Clark MD,Voytas DF. Plant gene editing through de novo induction of meristems[J]. Nat Biotechnol,2020,38(1):84−89. doi: 10.1038/s41587-019-0337-2
    [28]
    Cody JP,Maher MF,Nasti RA,Starker CG,Chamness JC,Voytas DF. Direct delivery and fast-treated Agrobacterium co-culture (Fast-TrACC) plant transformation methods for Nicotiana benthamiana[J]. Nat Protoc,2023,18(1):81−107. doi: 10.1038/s41596-022-00749-9
    [29]
    Ge XY,Xu JT,Yang ZE,Yang XF,Wang Y,et al. Efficient genotype-independent cotton genetic transformation and genome editing[J]. J Integr Plant Biol,2023,65(4):907−917. doi: 10.1111/jipb.13427
    [30]
    Cao XS,Xie HT,Song ML,Lu JH,Ma P,et al. Cut-dip-budding delivery system enables genetic modifications in plants without tissue culture[J]. Innovation,2023,4(1):100345.
    [31]
    Meng D,Yang Q,Dong BY,Song ZH,Niu LL,et al. Development of an efficient root transgenic system for pigeon pea and its application to other important economically plants[J]. Plant Biotechnol J,2019,17(9):1804−1813. doi: 10.1111/pbi.13101
    [32]
    Woo JW,Kim J,Kwon SI,Corvalán C,Cho SW,et al. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins[J]. Nat Biotechnol,2015,33(11):1162−1164. doi: 10.1038/nbt.3389
    [33]
    Yang L,Machin F,Wang SF,Saplaoura E,Kragler F. Heritable transgene-free genome editing in plants by grafting of wild-type shoots to transgenic donor rootstocks[J]. Nat Biotechnol,2023,41(7):958−967. doi: 10.1038/s41587-022-01585-8
    [34]
    Zhao DD,Li J,Li SW,Xin XQ,Hu MZ,et al. Glycosylase base editors enable C-to-A and C-to-G base changes[J]. Nat Biotechnol,2021,39(1):35−40. doi: 10.1038/s41587-020-0592-2
    [35]
    Anzalone AV,Randolph PB,Davis JR,Sousa AA,Koblan LW,et al. Search-and-replace genome editing without double-strand breaks or donor DNA[J]. Nature,2019,576(7785):149−157. doi: 10.1038/s41586-019-1711-4
    [36]
    Sun C,Lei Y,Li BS,Gao Q,Li YJ,et al. Precise integration of large DNA sequences in plant genomes using PrimeRoot editors[J]. Nat Biotechnol,2024,42(2):316−327. doi: 10.1038/s41587-023-01769-w
    [37]
    廖卫芳,付春华,刘志国,缪礼鸿,余龙江. 中国红豆杉羟化酶基因TcCYP725A22的亚细胞定位及过表达作用分析[J]. 生物工程学报,2019,35(6):1109−1116.

    Liao WF,Fu CH,Liu ZG,Miao LH,Yu LJ. Sub-cellular localization and overexpressing analysis of hydroxylase gene TcCYP725A22 of Taxus chinensis[J]. Chinese Journal of Biotechnology,2019,35(6):1109−1116.
    [38]
    Bai C,Cao YP,Zhao SY,Wu ZY,Dai SJ,et al. Generation of CRISPR/Cas9-mediated mutants in Monochasma savatieri using a hairy root system[J]. Ind Crop Prod,2023,191:116008. doi: 10.1016/j.indcrop.2022.116008
    [39]
    Utami ESW,Hariyanto S,Manuhara YSW. Agrobacterium tumefaciens-mediated transformation of Dendrobium lasianthera J. J. Sm:an important medicinal orchid[J]. J Genet Eng Biotechnol,2018,16(2):703−709. doi: 10.1016/j.jgeb.2018.02.002
    [40]
    Dilshad E,Ismail H,Kayani WK,Mirza B. Optimization of conditions for genetic transformation and in vitro propagation of Artemisia carvifolia Buch[J]. Curr Synth Syst Biol,2016,4(1):1000129.
    [41]
    Bulle M,Rathakatla D,Lakkam R,Kokkirala VR,Aileni M,et al. Agrobacterium tumefaciens – Mediated transformation of Woodfordia fruticosa (L. ) Kurz[J]. J Genet Eng Biotechnol,2015,13(2):201−207. doi: 10.1016/j.jgeb.2015.09.001
    [42]
    Shilpha J,Jayashre M,Largia MJV,Ramesh M. Direct shoot organogenesis and Agrobacterium tumefaciens mediated transformation of Solanum trilobatum L.[J]. Turk J Biol,2016,40(4):16.
    [43]
    Pandey V,Misra P,Chaturvedi P,Mishra MK,Trivedi PK,Tuli R. Agrobacterium tumefaciens-mediated transformation of Withania somnifera (L.) Dunal:an important medicinal plant[J]. Plant Cell Rep,2010,29(2):133−141. doi: 10.1007/s00299-009-0805-0
    [44]
    Li Y,Gao ZR,Piao CL,Lu KW,Wang ZP,Cui ML. A stable and efficient Agrobacterium tumefaciens-mediated genetic transformation of the medicinal plant Digitalis purpurea L.[J]. Appl Biochem Biotech,2014,172(4):1807−1817. doi: 10.1007/s12010-013-0648-6
    [45]
    孙颖,赵恒伟,葛锋,石磊,刘迪秋. 三七中SS基因超表达载体的构建及其遗传转化[J]. 药学学报,2013,48(1):138−143.

    Sun Y,Zhao HW,Ge F,Shi L,Liu DQ. The construction of over-expression vector for Panax notoginseng SS gene and its transformation[J]. Acta Pharmaceutica Sinica,2013,48(1):138−143.
    [46]
    Park NI,Tuan PA,Li XH,Kim YK,Yang TJ,Park SU. An efficient protocol for genetic transformation of Platycodon grandiflorum with Agrobacterium rhizogenes[J]. Mol Biol Rep,2011,38(4):2307−2313. doi: 10.1007/s11033-010-0363-0
    [47]
    Zhou Z,Li Q,Xiao L,Wang Y,Feng JX,et al. Multiplexed CRISPR/Cas9-mediated knockout of laccase genes in Salvia miltiorrhiza revealed their roles in growth,development,and metabolism[J]. Front Plant Sci,2021,12:647768. doi: 10.3389/fpls.2021.647768
    [48]
    Li YL,Li ST,Dong YS,Zhang Y,Fu CH,Yu LJ. Stable transformation of suspension-cultured Glycyrrhiza inflata batalin cells with Agrobacterium tumefaciens[J]. Z Naturforsch C,2012,67(11-12):603−610. doi: 10.1515/znc-2012-11-1211
    [49]
    郭朝阳,崔婷婷,薛建平,朱艳芳,张爱民,等. 根癌农杆菌介导sHSP基因对半夏的遗传转化[J]. 中国中药杂志,2012,37(24):3758−3762.

    Guo ZY,Cui TT,Xue JP,Zhu YF,Zhang AM,et al. Genetic transformation of Pinellia ternate with Agrobacterium tumefaciens-mediated sHSP genes[J]. China Journal of Chinese Materia Medica,2012,37(24):3758−3762.
    [50]
    Gupta V,Khan S,Verma RK,Shanker K,Singh SV,Rahman LU. Overexpression of chrysanthemyl diphosphate synthase (CDS) gene in Tagetes erecta leads to the overproduction of pyrethrin[J]. Transgenic Res,2022,31(6):625−635. doi: 10.1007/s11248-022-00323-9
    [51]
    谭木秀,莫乔程,刘凤鸣,潘晓思,林绍洁,师凤华. 红腺忍冬遗传转化体系的优化[J]. 中药材,2021,44(9):2045−2050.
    [52]
    姜育松,强玮,马东迪,左婷婷,苏畅凤,等. 钩藤发根的高效诱导和最适培养基的筛选[J]. 中药材,2021,44(11):2516−2520.

    Jiang YS,Qiang W,Ma DD,Zuo TT,Su CF,et al. Highly efficient induction of Uncaria rhynchophylla hairy root and selection of optimum medium[J]. Journal of Chinese Medicinal Materials,2021,44(11):2516−2520.
    [53]
    刘闵豪,徐郡儡,叶靖,李周岐,范睿深,李龙. 农杆菌介导的杜仲叶片愈伤组织遗传转化体系[J]. 林业科学,2020,56(2):79−88.

    Liu MH,Xu JL,Ye J,Li ZQ,Fan RS,Li L. Agrobacterium tumefaciens-mediated transformation of leaf callus in Eucommia ulmoides[J]. Scientia Silvae Sinicae,2020,56(2):79−88.
    [54]
    王静,唐静,崔悦婷,陈韵,赵会君,闫兴富. 农杆菌介导的黑果枸杞遗传转化体系的建立[J]. 北方园艺,2020(1):104−110.

    Wang J,Tang J,Cui YT,Chen Y,Zhao HJ,Yan XF. Establishment of Agrobacterium-mediated genetic transformation system in Lycium ruthenicium Murr.[J]. Northern Horticulture,2020(1):104−110.
    [55]
    陈长明,赵祥明,雷建军,曹必好,陈国菊. 基因枪法和农杆菌介导的Bt抗虫基因转化芥蓝[J]. 中国蔬菜,2016(8):21−28.

    Chen CM,Zhao XM,Lei JJ,Cao BH,Chen GJ. Pyramiding of Bt gene into Brassica alboglabra L. H. Bailey by biolistic and agrobacterium-mediated transformation methods[J]. China Vegetables,2016(8):21−28.
    [56]
    茅文俊,鲍大鹏,周陈力,李燕,谭琦,汪滢. 运用基因枪法进行蛹虫草遗传转化的研究[J]. 园艺学报,2015,42(9):1837−1842.

    Mao WJ,Bao DP,Zhou CL,Li Y,Tan Q,Wang Y. Effective transformation of Cordyceps militaris by particle bombardment[J]. Acta Horticulturae Sinica,2015,42(9):1837−1842.
    [57]
    徐春波,王勇,赵来喜,赵海霞,米福贵. 基因枪法获得转CBF4基因蒙农杂种冰草的研究[J]. 中国草地学报,2013,35(5):24−28. doi: 10.3969/j.issn.1673-5021.2013.05.005

    Xu CB,Wang Y,Zhao LX,Zhao HX,Mi FG. Studies on transformation of Agropyron cristatum × A. desertorum cv. mengnong with CBF4 by particle bombardment[J]. Chinese Journal of Grassland,2013,35(5):24−28. doi: 10.3969/j.issn.1673-5021.2013.05.005
    [58]
    杨雪飞,王瑛,罗建平. 铁皮石斛外源lea3基因的转化及耐盐性分析[J]. 应用与环境生物学报,2010,16(5):622−626.

    Yang XF,Wang Y,Luo JP. Transformation of lea3 gene into Dendrobium candidum wall. ex Lindl for enhancing its salt tolerance[J]. Chinese Journal of Applied & Environmental Biology,2010,16(5):622−626.
    [59]
    宫本贺,熊和平,马雄风,喻春明,王延周. 基因枪介导法转化苎麻获得转基因植株的研究[J]. 作物杂志,2010(1):87−90.

    Gong BH,Xiong HP,Ma XF,Yu CM,Wang YZ. Development of transgenic plants using ramie cotyledon derived callus via particle bombardment[J]. Crops,2010(1):87−90.
    [60]
    毛碧增,孙丽,刘雪辉. 基因枪转化双价防卫基因获得抗立枯病白术[J]. 中草药,2008,39(1):99−102.

    Mao BZ,Sun L,Liu XH. Transgenic Atractylodes macrocephala with double defense genes exhibiting resistance to Rhizoctonia solani[J]. Chinese Traditional and Herbal Drugs,2008,39(1):99−102.
    [61]
    顾海燕,马昕,王仙琴,李萍,郝俊虎,等. 抗肝炎转基因枸杞新品种培育的初步研究[J]. 陕西农业科学,2007(6):44−45.
    [62]
    Demirer GS,Zhang H,Goh NS,González-Grandío E,Landry MP. Carbon nanotube–mediated DNA delivery without transgene integration in intact plants[J]. Nat Protoc,2019,14(10):2954−2971. doi: 10.1038/s41596-019-0208-9
    [63]
    Zhao X,Meng ZG,Wang Y,Chen WJ,Sun CJ,et al. Pollen magnetofection for genetic modification with magnetic nanoparticles as gene carriers[J]. Nat Plants,2017,3(12):956−964. doi: 10.1038/s41477-017-0063-z
    [64]
    Kwak SY,Lew TTS,Sweeney CJ,Koman VB,Wong MH,et al. Chloroplast-selective gene delivery and expression in planta using chitosan-complexed single-walled carbon nanotube carriers[J]. Nat Nanotechnol,2019,14(5):447−455. doi: 10.1038/s41565-019-0375-4
    [65]
    Fang L,Wei XY,Liu LZ,Zhou LX,Tian YP,et al. A tobacco ringspot virus-based vector system for gene and microRNA function studies in cucurbits[J]. Plant Physiol,2021,186(2):853−864. doi: 10.1093/plphys/kiab146
    [66]
    Zhang CQ,Ghabrial SA. Development of Bean pod mottle virus-based vectors for stable protein expression and sequence-specific virus-induced gene silencing in soybean[J]. Virology,2006,344(2):401−411. doi: 10.1016/j.virol.2005.08.046
    [67]
    谢珍妮,劳嘉,钟灿,贺炜,张水寒,金剑. 药用植物基因编辑种质创新应用与制度监管[J]. 南京中医药大学学报,2023,39(4):393−400.

    Xie ZN,Lao J,Zhong C,He W,Zhang SH,Jin J. Application and institutional supervision of gene editing for germplasm innovation of medicinal plant resources[J]. Journal of Nanjing University of Traditional Chinese Medicine,2023,39(4):393−400.
    [68]
    龙雨青,曾娟,王玲,付学森,刘紫璇,等. CRISPR/Cas9基因组编辑技术在药用植物中的研究进展[J]. 中草药,2023,54(9):2940−2952.

    Long YQ,Zeng J,Wang L,Fu XS,Liu ZX,et al. Advances in CRISPR/Cas9 genome editing technique and its application in medicinal plants[J]. Chinese Traditional and Herbal Drugs,2023,54(9):2940−2952.
    [69]
    Li B,Cui GH,Shen GA,Zhan ZL,Huang LQ,et al. Targeted mutagenesis in the medicinal plant Salvia miltiorrhiza[J]. Sci Rep,2017,7:43320. doi: 10.1038/srep43320
    [70]
    Li B,Li JW,Chai YQ,Huang YY,Li L,et al. Targeted mutagenesis of CYP76AK2 and CYP76AK3 in Salvia miltiorrhiza reveals their roles in tanshinones biosynthetic pathway[J]. Int J Biol Macromol,2021,189:455−463. doi: 10.1016/j.ijbiomac.2021.08.112
    [71]
    Zeng LJ,Zhang QZ,Jiang CX,Zheng YY,Zuo YW,et al. Development of Atropa belladonna L. plants with high-yield hyoscyamine and without its derivatives using the CRISPR/Cas9 system[J]. Int J Mol Sci,2021,22(4):1731. doi: 10.3390/ijms22041731
    [72]
    Ma WH,Kang X,Liu P,Zhang YY,Lin XR,et al. The analysis of transcription factor CsHB1 effects on caffeine accumulation in tea callus through CRISPR/Cas9 mediated gene editing[J]. Process Biochem,2021,101:304−311. doi: 10.1016/j.procbio.2021.01.001
    [73]
    Zakaria MM,Schemmerling B,Ober D. CRISPR/Cas9-mediated genome editing in comfrey (Symphytum officinale) hairy roots results in the complete eradication of pyrrolizidine alkaloids[J]. Molecules,2021,26(6):1498. doi: 10.3390/molecules26061498
    [74]
    Kui L,Chen HT,Zhang WX,He SM,Xiong ZJ,et al. Builsding a genetic manipulation tool Box for orchid biology:identification of constitutive promoters and application of CRISPR/Cas9 in the orchid,Dendrobium officinale[J]. Front Plant Sci,2017,7:2036.
    [75]
    Feng S,Song W,Fu RR,Zhang H,Xu AR,Li JR. Application of the CRISPR/Cas9 system in Dioscorea zingiberensis[J]. Plant Cell Tiss Organ Cult,2018,135(1):133−141. doi: 10.1007/s11240-018-1450-5
    [76]
    Wen D,Wu L,Wang MY,Yang W,Wang XW,et al. CRISPR/Cas9-mediated targeted mutagenesis of FtMYB45 promotes flavonoid biosynthesis in tartary buckwheat (Fagopyrum tataricum)[J]. Front Plant Sci,2022,13:879390. doi: 10.3389/fpls.2022.879390
    [77]
    Zhang XY,Xu GC,Cheng CH,Lei L,Sun J,et al. Establishment of an Agrobacterium-mediated genetic transformation and CRISPR/Cas9-mediated targeted mutagenesis in Hemp (Cannabis sativa L.)[J]. Plant Biotechnol J,2021,19(10):1979−1987. doi: 10.1111/pbi.13611
    [78]
    Qin H,Xiao H,Zou G,Zhou ZH,Zhong JJ. CRISPR-Cas9 assisted gene disruption in the higher fungus Ganoderma species[J]. Process Biochem,2017,56:57−61. doi: 10.1016/j.procbio.2017.02.012
    [79]
    Xie ZN,Zhong C,Liu XL,Wang ZL,Zhou RR,et al. Genome editing in the edible fungus Poria cocos using CRISPR-Cas9 system integrating genome-wide off-target prediction and detection[J]. Front Microbiol,2022,13:966231. doi: 10.3389/fmicb.2022.966231
    [80]
    Alagoz Y,Gurkok T,Zhang BH,Unver T. Manipulating the biosynthesis of bioactive compound alkaloids for next-generation metabolic engineering in opium poppy using CRISPR-Cas 9 genome editing technology[J]. Sci Rep,2016,6:30910. doi: 10.1038/srep30910
    [81]
    Qiao DX,Wang JY,Lu MH,Xin CP,Chai YP,et al. Optimized prime editing efficiently generates heritable mutations in maize[J]. J Integr Plant Biol,2023,65(4):900−906. doi: 10.1111/jipb.13428
    [82]
    Lin QP,Zong Y,Xue CX,Wang SX,Jin S,et al. Prime genome editing in rice and wheat[J]. Nat Biotechnol,2020,38(5):582−585. doi: 10.1038/s41587-020-0455-x
  • Related Articles

    [1]Yang Lin, Yin Kang-Quan, Du Fang. Cloning of QaGDU3 gene from Quercus aquifolioides Rehd. et Wils. and its genetic transformation into Arabidopsis thaliana (L.) Heynh.[J]. Plant Science Journal, 2022, 40(4): 524-532. DOI: 10.11913/PSJ.2095-0837.2022.40524
    [2]WEI Lei, FEI Zhen-Jiang. Mitochondrial RNA Editing of ATPase atp6 Gene Transcripts of Yunnan Purple Rice(Oryza sativa L.)[J]. Plant Science Journal, 2010, 28(3): 251-256. DOI: 10.3724/SP.J.1142.2010.30251
    [3]WEI Lei, YAN Zhi-Xiang, YU Jin-Hong, DING Yi. Mitochondrial RNA Editing of ATPase atp9 Gene Transcripts of Yunnan Purple Rice(Oryza sativa L.)[J]. Plant Science Journal, 2008, 26(6): 567-572.
    [4]DENG Xiao-Li, CHANG Jing-Ling, HE Jie, HE Guang-Cun. Transformation of Lettuce with FMDV Epitopes Fused Gene Mediated by Agrobacterium[J]. Plant Science Journal, 2006, 24(5): 476-479.
    [5]KONG Jin, TAN Yan-Ping, CHEN Zu-Yu, LI Shao-Qing, ZHU Ying-Guo. Study on the Editing Sites in Transcripts of Functional Genes of HL-cytoplasmic Male Sterility Rice Mitochondria during Microgametogenesis[J]. Plant Science Journal, 2006, 24(2): 95-99.
    [6]HE Jie, SUN Zhen-Yuan, WEI Jian-Hua, WANG Hong-Zhi, Xiao Xian-Zhou, LI Rui-Fen. Advance on the Study of Biotechnology in Zoysiagrass[J]. Plant Science Journal, 2006, 24(1): 74-79.
    [7]ZHOU Yan-Qing, Wang Na, YUAN Bao-Jun, JIA Jing-Fen, MENG Xiang-Chun. Current Review on Genetic Transformation of Soybean (Glycine max L.)[J]. Plant Science Journal, 2004, 22(2): 163-170.
    [8]HUANG Xuan, XU Zi-Qin, HAO Jian-Guo, LI Jing. Factors Affecting Wheat(Triticum aestivum L.)Transformation Mediated by Biolistic Bombardment[J]. Plant Science Journal, 2004, 22(2): 111-115.
    [9]Tao Lizhen, Ling Dinghou, Zhang Shiping, Claude Fauquet. GENE TRANSFORMATION BY PARTICLE BOM-BARDMENT IN INDICA RICE AND INHERITANCE OF THE FOREIGN GENE IN HOST RICE PLANT[J]. Plant Science Journal, 1999, 17(4): 289-296.
    [10]Deng Xiuxin, Liu Jihong. ADVANCES IN GENETIC TRANSFORMATION AND GENOME TRANSFER OF FRUIT CROPS[J]. Plant Science Journal, 1996, 14(4): 357-369.
  • Cited by

    Periodical cited type(2)

    1. 张昊熙昱,林龙飞,袁媛,刘宇灵,李慧. 植物遗传转化技术在药用植物中的研究进展. 中国实验方剂学杂志. 2025(02): 323-330 .
    2. 李勇,赖旭辉,李春梅,姚琼,刘凯. 匙羹藤的应用及研究进展. 中国农学通报. 2025(01): 89-95 .

    Other cited types(6)

Catalog

    Article views (394) PDF downloads (95) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return