Analysis of heat shock protein 70 gene family in Capsicum chinense Jacq.
-
摘要: 以中国辣椒(Capsicum chinense Jacq.)基因组数据为基础,采用生物信息学方法对中国辣椒HSP70基因家族进行全基因组鉴定分析。结果显示,中国辣椒全基因共鉴定得到20个HSP70基因,编码蛋白序列长度为516~854 aa,分子量大小为56.21~94.26 kD。系统进化分析结果表明,中国辣椒HSP70基因可分为A、B、C 3个亚家族。比较转录组分析结果显示,有16个HSP70基因对热胁迫有不同程度的响应。Abstract: Based on genomic data of Capsicum chinense Jacq., whole genome identification of the HSP70 gene family was carried out using bioinformatics. In total, 20 HSP70 genes were identified, with coding protein length ranging from 516 to 854 aa and molecular weight ranging from 56.21 to 94.26 kD. Phylogenetic analysis showed that the HSP70 gene family was divided into three subfamilies:A, B, and C. Comparative transcriptome analysis showed that 16 HSP70 genes were responsive to heat stress.
-
Keywords:
- Capsicum chinense /
- HSP70 gene family /
- Bioinformatics
-
-
[1] Han S, Liu Y, Chang A. Cytoplasmic Hsp70 promotes ubiquitination for endoplasmic reticulum-associated degradation of a misfolded mutant of the yeast plasma membrane ATPase, PMA1[J]. J Biol Chem, 2007, 282(36):26140-26149.
[2] Hendrick JP, Hartl FU. Molecular chaperone functions of heat-shock proteins[J]. Annu Rev Biochem, 2003, 62:349-384.
[3] Wang A, Yu XH, Yun M, Ying L, Liu GQ, et al. Overexpression of a small heat-shock-protein gene enhances tolerance to abiotic stresses in rice[J]. Plant Breeding, 2015, 134(4):384-393.
[4] Georgopoulos C, Welch WJ. Role of the major heat shock proteins as molecular chaperones[J]. Annu Rev Cell Biol, 1993, 9(1):601-634.
[5] Waters RER. Comparative genomic analysis of the Hsp70s from five diverse photosynthetic eukaryotes[J]. Cell Stress Chaperon, 2007, 12(2):172-185.
[6] Guo M, Liu JH, Ma X, Zhai YF, Gong ZH, Lu MH. Genome-wide analysis of the HSP70 family genes in pepper (Capsicum annuum L.) and functional identification of CaHsp70-2 involvement in heat stress[J]. Plant Sci, 2016, 252:246-256.
[7] Huang XY, Tao P, Li BY, Wang WH, Yue ZC, et al. Genome-wide identification, classification, and analysis of heat shock transcription factor family in Chinese cabbage (Brassica rapa pekinensis)[J]. Genet Mol Res, 2015, 14(1):2189-204.
[8] Latijnhouwers M, Mller XSG. Arabidopsis stromal 70-kDa heat shock proteins are essential for chloroplast development[J]. Planta, 2010, 232(3):567-578.
[9] Tiwari LD, Khungar L, Grover A. AtHsc70-1 negatively regulates the basal heat tolerance in Arabidopsis thaliana through affecting the activity of HsfAs and Hsp101[J]. Plant J, 2020, 103(6):2069-2083.
[10] Cazalé AC, Clément M, Serge C, Marie AR, Nathalie P, et al. Altered expression of cytosolic/nuclear HSC70-1 molecular chaperone affects development and abiotic stress tolerance in Arabidopsis thaliana[J]. J Exp Bot, 2009, 60(9):2653-2664.
[11] Chaston J, Smits C, Aragão D, Andrew W, Ahsan B, et al. Structural and functional insights into the evolution and stress adaptation of typeⅡ chaperonins.[J]. Structure, 2016, 24(3):364-374.
[12] Seo K, Choi E, Lee D, Jeong DE, Jang SK, Lee SJ. Heat shock factor 1 mediates the longevity conferred by inhibition of TOR and insulin/IGF-1 signaling pathways in C. elegans[J]. Aging Cell, 2013, 12(6):1073-1081.
[13] 贾志银. 辣椒耐热生理生化特性及谷胱甘肽处理效应研究[D]. 咸阳:西北农林科技大学, 2010. [14] Pagamas P, Nawata E. Sensitive stages of fruit and seed development of chili pepper(Capsicum annuum L. var. Shishito) exposed to high-temperature stress[J]. Scihortic-Amsterdam, 2008, 117(1):21-25.
[15] 胡能兵, 隋益虎, 舒英杰, 何克勤. 高温胁迫对不同热敏型辣椒同工酶及DNA甲基化的影响[J]. 西北植物学报, 2016, 36(1):137-144. Hu NB, Sui YH, Shu YJ, He KQ. Effect of heat stress on isoenzyme and DNA methylation of different heat-sensitive peppers[J]. Acta Botanica Boreali-Occidentalia Sinica, 2016, 36(1):137-144.
[16] Li QB, Haskell DW, Guy CL. Coordinate and non-coordinate expression of the stress 70 family and other molecular chaperones at high and low temperature in spinach and tomato[J]. Plant Mol Biol, 1999, 39(1):21-34.
[17] Liu J, Pang X, Cheng Y, Yin YH, Zhang Q, et al. The HSP70 gene family in Solanum tuberosum:genome-wide identification, phylogeny, and expression patterns[J]. Sci Rep-UK, 2018, 8(8):1025-1039.
[18] Kim S, Park J, Yeom SI, Kim YM, Seo E, et al. New reference genome sequences of hot pepper reveal the massive evolution of plant disease-resistance genes by retroduplication[J]. Genome Biol, 2017, 18:210.
[19] 高崇伦, 黄家权, 成善汉, 汪志伟, 尹黎燕. 中国辣椒热胁迫转录因子的全基因组鉴定及热胁迫响应的初步分析[J]. 植物科学学报, 2020, 38(2):249-259. Gao CL, Huang JQ, Cheng SH, Wang ZW, Yin LY. Genome-wide identification of heat stress transcription factors and preliminary analysis of heat stress responses in Capsicum chinense Jacq.[J]. Plant Science Journal, 2020, 38(2):249-259.
[20] Sung DY, Kaplan F, Guy CL. Plant Hsp70 molecular chaperones:protein structure, gene family, expression and function[J]. Physiol Plantarum, 2010, 113(4):443-451.
[21] Sung DY, Guy CL. Comprehensive expression profile analysis of the Arabidopsis HSP70 gene family[J]. Plant Physiol, 2001, 126(2):789-800.
[22] Guy CL, Li QB. The organization and evolution of the spinach stress 70 molecular chaperone gene family[J]. Plant Cell, 1998, 10(4):539-556.
[23] Zhang L, Zhao HK, Dong QL, Zhang YY, Wang YM, et al. Genome-wide analysis and expression profiling under heat and drought treatments of HSP70 gene family in soybean(Glycine max L.)[J]. Front Plant Sci, 2015, 6:773.
[24] Kose S, Furuta M, Imamoto N. Hikeshi, a nuclear import carrier for Hsp70s, protects cells from heat shock-induced nuclear damage[J]. Cell, 2012, 149(3):578-589.
[25] Semon M, Wolfe KH. Consequences of genome duplication[J]. Curr Opin Genet Dev, 2007, 17(6):505-512.
[26] Sarkar NK, Kundnani P, Grover A. Functional analysis of Hsp70 superfamily proteins of rice (Oryza sativa)[J]. Cell Stress Chaperon, 2013, 18(4):427-437.
[27] Zhang CX, Feng BH, Chen TT, Zhang XF, Tao LX, Fu GF. Sugars, antioxidant enzymes and IAA mediate salicylic acid to prevent rice spikelet degeneration caused by heat stress[J]. Plant Growth Regul, 2017, 83(2):313-323.
[28] Guy CL. Physiological and molecular assessment of altered expression of Hsc70-1 in Arabidopsis. Evidence for pleiotropic consequences[J]. Plant Physiol, 2003, 132(2):979-987.
-
期刊类型引用(9)
1. 吴秀兰,彭华丹,唐文武. 白菜GRF转录因子家族全基因组鉴定、进化及表达模式分析. 分子植物育种. 2023(24): 8013-8019 . 百度学术
2. 魏春梅,蔡斌,陶宇蝶,李林菊,赵秋燕,周敏,黄美娟,黄海泉. 滇水金凤花距发育相关基因GRF的克隆及表达分析. 植物科学学报. 2022(05): 669-676 . 本站查看
3. 叶正,高崇伦,Zakaria Gagoshidze,舒黄英,包文龙,朱婕,成善汉,朱国鹏,汪志伟. 中国辣椒低温响应转录因子CBF全基因组鉴定与分析. 分子植物育种. 2021(15): 4903-4910 . 百度学术
4. 娄永峰,宋晓琛,孙化雨,高志民. 毛竹PeGRF1基因克隆及初步功能分析. 分子植物育种. 2021(21): 7084-7091 . 百度学术
5. 陈俊,屈志广,方远鹏,蒋君梅,李向阳,谢鑫. 高粱GRF基因家族鉴定及SbGRF4原核表达分析. 植物保护学报. 2020(04): 929-938 . 百度学术
6. 刘蒲东,张舒婷,陈晓慧,苏立遥,姚德恒,李汉生,张梓浩,陈裕坤,林玉玲,赖钟雄. 龙眼GRF家族全基因组鉴定及表达模式. 应用与环境生物学报. 2020(02): 236-245 . 百度学术
7. 徐小强,刘安平,娄永峰. 毛竹PeGRF5基因的克隆及表达分析. 南方林业科学. 2020(05): 44-48 . 百度学术
8. 田娜,刘范,伍俊为,刘嘉鹏,李丹,付帅,黄玉吉,程春振. 香蕉GRF基因家族的全基因组鉴定及表达分析. 果树学报. 2020(12): 1821-1835 . 百度学术
9. 徐秀荣,杨克彬,王思宁,高志民. 毛竹bHLH转录因子的鉴定及其在干旱和盐胁迫条件下的表达分析. 植物科学学报. 2019(05): 610-620 . 本站查看
其他类型引用(5)
计量
- 文章访问数: 536
- HTML全文浏览量: 4
- PDF下载量: 541
- 被引次数: 14