Cloning and expression analysis of GRF genes related to spur development in Impatiens uliginosa Franch.
-
摘要: 采用RT-PCR技术对滇水金凤(Impatiens uliginosa Franch.)GRF基因进行克隆,对其编码蛋白序列进行同源性分析和系统进化分析,并利用qRT-PCR方法分析GRF基因的时空表达模式。结果显示,从滇水金凤中成功获得两个GRF基因,其 cDNA全长分别为1137和903 bp,分别编码378和300 aa,分别命名为IuGRF1和IuGRF2,二者均具有QLQ和WRC结构域。除了保守区域外,滇水金凤GRF基因编码产物序列与其他物种的同源性较低。系统进化分析结果表明,IuGRF1和IuGRF2分别位于两个不同的进化分支。基因表达分析发现,IuGRF1在花苞期和盛花期距部表达量最高,而在檐部的表达随花距的发育逐渐降低。IuGRF2在花苞期檐部表达量最高,随着花距的发育逐渐降低。此外,IuGRF1和IuGRF2基因均在始花期花距弯部表达量最高,且随着花距的发育,在尖部和弯部的表达量逐渐降低,而在基部的表达量逐渐升高。推测滇水金凤的两个基因为同源基因,IuGRF1主要参与花距距部的生长和发育,而IuGRF2主要参与檐部的生长和发育。Abstract: GRF genes related to spur development in Impatiens uliginosa Franch. were cloned using reverse transcription polymerase chain reaction (RT-PCR), with homology and phylogenetic analysis of protein sequences then investigated using DNAMAN and MEGA. In addition, the spatiotemporal expression patterns of GRF genes were investigated by quantitative RT-PCR(qRT-PCR). Results showed that two GRF genes of I. uliginosa were successfully cloned, whose full-length cDNA sequences were 1137 bp and 903 bp, encoding 378 amino acids (aa) and 300 aa and named IuGRF1 and IuGRF2, respectively. Both contained the QLQ and WRC structural domains. The GRF genes of I. uliginosa showed low homology with GRF genes from other species, except for the conserved domains, which may be correlated with the diversity of the C-terminal domain in GRF genes. Based on phylogenetic analysis, IuGRF1 and IuGRF2 were separated into different branches. The qRT-PCR results showed that the expression of IuGRF1 was the highest in the spur cup at both the bud and blooming stages but decreased in the blade with the development of the spur. The expression of IuGRF2 was the highest in the blade at the bud stage but declined gradually with spur growth and was low in the spur cup. The expression levels of IuGRF1 and IuGRF2 were the highest in the cup curve at the beginning of the flowering stage but decreased gradually in the cup mucro and curve with spur development and increased gradually in the cup base. Based on the above results, we speculated that the two GRF genes in I. uliginosa were paralogous, with IuGRF1 playing a major role in spur cup development and IuGRF2 playing a major role in blade development.
-
Keywords:
- Impatiens uliginosa /
- Spur development /
- GRF genes /
- Gene cloning /
- Expression analysis
-
-
[1] 童桢开,李洋,蔡斌,李新艺,黄美娟,黄海泉.滇水金凤SAUR基因的克隆及表达分析[J].西北植物学报, 2022, 42(1):21-28. Tong ZK, Li Y, Cai B, Li XY, Huang MJ, Huang HQ. Cloning and expression analysis of SAUR gene of Impatiens uliginose Franch.[J]. Acta Botanica Boreali-Occidentalia Sinica, 2022, 42(1):21-28.
[2] Box MS, Bateman RM, Glover BJ, Rudall PJ. Floral ontogenetic evidence of repeated speciation via paedomorphosis in subtribe Orchidinae (Orchidaceae)[J]. Bot J Linn Soc, 2010, 157(3):429-454.
[3] Chupp AD, Battaglia LL, Schauber EM, Sipes SD. Orchid-pollinator interactions and potential vulnerability to biological invasion[J]. AoB Plants, 2015, 7:plv099
[4] Ballerini ES, Kramer EM, Hodges SA. Comparative transcriptomics of early petal development across four diverse species of Aquilegia reveal few genes consistently associa-ted with nectar spur development[J]. BMC Genomics, 2019, 20(1):668.
[5] Fernández-Mazuecos M, Glover BJ. The evo-devo of plant speciation[J]. Nat Ecol Evol, 2017, 1(4):110.
[6] Puzey JR, Gerbode SJ, Hodges SA, Kramer EM, Mahadevan L. Evolution of spur-length diversity in Aquilegia pe-tals is achieved solely through cell-shape anisotropy[J]. Proc Biol Sci, 2011, 279(1733):1640-1645.
[7] Mack JL, Davis AR. The relationship between cell division and elongation during development of the nectar-yielding petal spur in Centranthus ruber (Valerianaceae)[J]. Ann Bot, 2015, 115(4):641-649.
[8] Tsai T, Diggle PK, Frye HA, Jones CS. Contrasting lengths of Pelargonium floral nectar tubes result from late differences in rate and duration of growth[J]. Ann Bot, 2018, 121(3):549-560.
[9] Cullen E, Fernández-Mazuecos M, Glover BJ. Evolution of nectar spur length in a clade of Linaria reflects changes in cell division rather than in cell expansion[J]. Ann Bot, 2018(122):801-809.
[10] Yant L, Collani S, Puzey J, Levy C, Kramer EM. Molecular basis for three-dimensional elaboration of the Aquilegia petal spur[J]. Proc Biol Sci, 2015, 282(1803):20142778.
[11] Zhang R, Min Y, Lynn DH, Walcher-Chevillet CL, Duan X, et al. A role for the auxin response factors[STXFX]ARF6 and ARF8[STXFZ] homologs in petal spur elongation and nectary maturation in Aquilegia[J]. New Phytol, 2020, 227(5):1392-1405.
[12] Stephanie JC, Cristina WC, Kate SB. Brassinosteroids regulate petal spur length in Aquilegia by controlling cell elongation[J]. Ann Bot, 2021, 128(7):931-942.
[13] Kim JH. Biological roles and an evolutionary sketch of the GRF-GIF transcriptional complex in plants[J]. BMB Rep, 2019, 52(4):227-238.
[14] Ercoli MF, Rojas AM, Debernardi JM, Palatnik JF, Rodriguez RE. Control of cell proliferation and elongation by miR396[J]. Plant Signal Behav, 2016, 11(6):e1184809.
[15] Lee BH, Jeon JO, Lee MM, Kim JH. Genetic interaction between growth-regulating factor and cup-shaped cotylledon in organ separation[J]. Plant Signal Behav, 2015, 10(2):e988071.
[16] 陈俊,屈志广,方远鹏,蒋君梅,李向阳,谢鑫.高粱GRF基因家族鉴定及[STXFX]SbGRF4[STXFZ]原核表达分析[J].植物保护学报, 2020, 47(4):929-938. Chen J, Qu ZG, Fang YP, Jiang JM, Li XY, Xie X. Identification of GRF gene family and prokaryotic expression analysis of[STXFX]SbGRF4[STXFZ] in sorghum[J]. Journal of Plant Protection, 2020, 47(4):929-938.
[17] 刘倩,王凤德,张一卉,邱念伟,高建伟.植物生长调控因子研究进展[J].植物生理学报, 2015, 51(11):1775-1779. Liu Q, Wang FD, Zhang YH, Qiu NW, Gao JW. Research progress of plant growth-regulating factor[J]. Plant Physio-logy Journal, 2015, 51(11):1775-1779.
[18] Liang G, He H, Li Y, Wang F, Yu D. Molecular mechanism of miRNA396 mediating pistil development in Arabidopsis[J]. Plant Physiol, 2014, 164(1):249-258.
[19] Baucher M, Moussawi J, Vandeputte OM, Monteyne D, Mol A, et al. A role for the miR396/GRF network in specification of organ type during flower development, as supported by ectopic expression of[STXFX]Populus trichocarpa miR396c[STXFZ] in transgenic tobacco[J]. Plant Biol, 2013, 15(5):892-898.
[20] 王鹏杰,郑玉成,林浥,周珍,杨江帆,叶乃兴.茶树GRF基因家族的全基因组鉴定及表达分析[J].西北植物学报, 2019, 39(3):413-421. Wang PJ, Zheng YC, Lin Y, Zhou Z, Yang JF, Ye NX. Genome-wide identification and expression analysis of GRF gene family in Camellia sinensis[J]. Acta Botanica Boreali-Occidentalia Sinica, 2019, 39(3):413-421.
[21] Luo C, Huang WL, Zhu JP, Feng ZX, Liu YL, et al. The complete chloroplast genome of Impatiens uliginosa Franch., an endemic species in Southwest China[J]. Mitochondrial DNA B, 2019, 4(2):3846-3847.
[22] 何龙燕,刘武阳,娄永峰,肖复明.毛竹GRF转录因子家族的全基因组鉴定与分析[J].植物科学学报, 2018, 36(5):713-720. He LY, Liu WY, Lou YF, Xiao FM. Genome-wide identification and analysis of the GRF transcription factor family in moso bamboo (Phyllostachys edulis)[J]. Plant Science Journal, 2018, 36(5):713-720.
[23] 时丕彪,何冰,费月跃,王军,王伟义,等.藜麦GRF转录因子家族的鉴定及表达分析[J].作物学报, 2019, 45(12):1841-1850. Shi PB, He B, Fei YY, Wang J, Wang WY, et al. Identification and expression analysis of GRF transcription factor family of Chenopodium quinoa[J]. Acta Agronomica Sinica, 2019, 45(12):1841-1850.
[24] Wang F, Qiu N, Ding Q, Li J, Zhang Y, et al. Genome-wide identification and analysis of the growth-regulating factor family in Chinese cabbage (Brassica rapa L. ssp. pekinensis)[J]. BMC Genomics, 2014, 15(1):807.
[25] 刘坤,齐静,刘梦兰,王德伟,刘妙杨.芝麻GRF基因家族全基因组鉴定分析[J].分子植物育种, 2020, 18(22):7323-7333. Liu K, Qi J, Liu ML, Wang DW, Liu MY. Genome-wide identification and analysis of sesame GRF gene family[J]. Molecular Plant Breeding, 2020, 18(22):7323-7333.
[26] 邢海彦,唐杰松,于耸,郑志民.蓖麻[STXFX]miR396[STXFZ]基因家族及其靶基因GRF生物信息学分析及鉴定[J].中国油料作物学报, 2022, 44(2):344-353. Xing HY, Tang JS, Yu S, Zheng ZM. Identification and bioinformatics of[STXFX]RcmiR396[STXFZ] gene family and its target gene GRF in castor (Ricinus communis L.)[J]. Chinese Journal of Oil Crop Sciences, 2022, 44(2):344-353.
[27] 马超,原佳乐,张苏,贾琦石,冯雅岚. GRF转录因子对植物生长发育及胁迫响应调控的分子机制[J].核农学报, 2017, 31(11):2145-2153. Ma C, Yuan JL, Zhang S, Jia QS, Feng YL. The molecular mechanisms of growth-regulating factors (GRFs) in plant growth, development and stress response[J]. Journal of Nuclear Agricultural Sciences, 2017, 31(11):2145-2153.
[28] 王燕,张礼宁,唐方毅,赵晓晓,奚亚军,王伟伟.柳枝稷GRF转录因子家族全基因组鉴定与分析[J].草地学报, 2022, 30(3):575-586. Wang Y, Zhang LN, Tang FY, Zhao XX, Xi YJ, Wang WW. Genome-wide identification and analysis of GRF transcription factors family in switchgrass[J]. Acta Agrestia Sinica, 2022, 30(3):575-586.
-
期刊类型引用(2)
1. 汪梦诗,祁雅楠,赵沁雨,兰天,鲍诗晗,孙翔宇,马婷婷. 五种陕西主栽猕猴桃品种营养品质与香气特征解析. 食品工业科技. 2024(23): 272-281 . 百度学术
2. 汪志威,宋福兵,周玉萍,李秀亚,胡秋舲,钟彩虹. 防雹网对东红猕猴桃生育期生长指标和叶片病害的影响. 果树学报. 2024(11): 2358-2367 . 百度学术
其他类型引用(0)
计量
- 文章访问数: 190
- HTML全文浏览量: 3
- PDF下载量: 27
- 被引次数: 2