Leaf-level phenotypic plasticity of Indigofera bungeana Walp.
-
摘要: 以中国分布最广、形态变异复杂且分类上存在争议的木蓝属植物河北木蓝(Indigofera bungeana Walp.)为研究对象,运用GIS技术从较大尺度上(17省28县29个居群)进行叶表型可塑性分析,利用表型可塑性指数和变异系数对叶表型可塑性进行评价,并对叶表型性状与环境因子的相关性进行分析。结果显示:河北木蓝叶表型性状在居群间的变异大于居群内;叶长、叶柄长、最少小叶数、最多小叶数、小叶长、小叶宽6个叶表型性状均具有可塑性,其中叶长的可塑性最大,小叶数目的可塑性最小;年均降水量是对叶表型可塑性影响最大的环境因子;6个叶表型性状与海拔均呈负相关,与年均气温呈正相关。研究结果可为河北木蓝的分类、适应性进化和开发利用奠定基础。Abstract: We selected Indigofera bungeana Walp., the most widely distributed and morphologically varied species of Indigofera in China, to conduct analysis of variance, phenotypic plasticity analysis, and correlation analysis based on six leaf characters across 29 populations and 570 individuals using GIS technology. Results showed significant differences in the leaf characters of I. bungeana among populations, with greater differences found among populations than within populations. All studied I. bungeana leaf characters (i.e., leaf length, petiole length, minimal number of leaflets, maximal number of leaflets, leaflet length, and leaflet width) were plastic, with plasticity of leaf length and leaflet number found to be the largest and smallest, respectively. Leaf number can be used as a valuable taxonomic character. Average annual precipitation had the largest impact on leaf plasticity. In addition, all characters were negatively correlated with altitude, but positively correlated with average annual temperature. These results provide basic data for further studies on the taxonomy, adaptive evolution, and resource utilization of I. bungeana.
-
-
[1] 葛颂, 洪德元. 泡沙参复合体(桔梗科)的物种生物学研究:Ⅰ.表型的可塑性[J]. 植物分类学报, 1994, 32(6):489-503. Ge S, Hong DY. Biosystematic studies on Adenophora potaninii Korsh. complex (Campanulaceae):Ⅰ. phenotypic plasticity[J]. Acta Phytotaxonomica Sinica, 1994, 32(6):489-503.
[2] Loretta G. Plant phenotypic plasticity in response to environmental factors[J]. Adv Bot, 2014, 2014:1-17.
[3] Davids PH, Heywood VH. Principes of angiosperm taxo-nomy[J]. Science, 1964, 144(3618):531.
[4] 赵雪利. 中国木蓝属的系统学研究[D]. 北京:中国科学院大学, 2016:54. [5] 方云亿, 郑朝宗. 国产木蓝属的系统研究[J]. 植物分类学报, 1989, 27(3):161-177. Fang YY, Zheng CZ. A study on the genus Indigofera Linn. from China[J]. Acta Phytotaxonomica Sinica, 1989, 27(3):161-177.
[6] Gao XF, Schrire B. Three New Species of Indigofera (Leguminosae) from China[J]. Novon:A Journal for Botanical Nomenclature, 2009, 19(2):159-163.
[7] 方云亿, 郑朝宗. 中国植物志:第40卷:马棘Indigofera pseudotinctoria[M]. 北京:科学出版社, 1994:306. [8] 尹国萍, 陈士林, 肖小河, 陈善墉. 中国木蓝属分布式样的数值分析及资源利用[J]. 广西植物, 1992, 12(1):22-32. Yin GP, Chen SL, Xiao XH, Chen SY. The numerical analysis of the distribution patters and exploitation of the resources of Chinese Indigofera[J]. Guihaia, 1992, 12(1):22-32.
[9] 焦云红, 付伟, 耿霄, 叶嘉, 王艳霞, 李磊, 等. 河北木蓝繁殖研究[J]. 安徽农业科学, 2009, 37(34):16824-16825. Jiao YH, Fu W, Geng X, Ye J, Wang YX, Li L. Study on propagation of indigofera bungeana Walp.[J]. Journal of Anhui Agricultural Sciences, 2009, 37(34):16824-16825.
[10] Gao XF, Schrire BD. Flora of China:Vol. 10[M]. Beijing:Science Press, 2010:158.
[11] 万利琴. 国产木蓝属Indigofera的分类研究[D]. 金华:浙江师范大学, 2009:40-69. [12] Zhao XL, Gao XF, Zhu ZM, Gao YD, Xu B. The demographic response of a deciduous shrub (the Indigofera bungeana complex, Fabaceae) to the pleistocene climate changes in east Asia[J]. Sci Rep, 2017, 7(1):697.
[13] 关保华, 葛滢, 樊梅英, 牛晓音, 卢毅军, 常杰. 华荠苧响应不同土壤水分的表型可塑性[J]. 生态学报, 2003, 23(2):259-263. Guan BH, Ge Y, Fan MY, Niu XY, Lu YJ. Chang J. Phenotypic plasticity of growth and morphology in Mosla chinensis responds to diverse relative soil[J]. Acta Ecologica Sinica, 2003, 23(2):259-263.
[14] 李晓玲, 温浩然, 王雪松, 杨进, 黄成名. 三峡库区不同生境下中华蚊母树叶片表型可塑性及其与土壤环境因子的关系[J]. 生态学报, 2018, 38(10):3581-3591. Li XL, Wen HR, Wang XS, Yang J, Huang CM. Phenotypic plasticity of Distylium chinense leaves in relation to soil environmental factors in heterogeneous habitats in the Three Gorges Reservoir Region[J]. Acta Ecologica Sinica, 2018, 38(10):3581-3591.
[15] 耿宇鹏, 张文驹, 李博, 陈家宽. 表型可塑性与外来植物的入侵能力[J]. 生物多样性, 2004, 12(4):447-455. Geng YP, Zhang WJ, Li B, Chen JK. Phenotypic plasticity and invasiveness of alien plants[J]. Biodiversity Science, 2004, 12(4):447-455.
[16] 王楠. 植物表型可塑性研究概况[J]. 林业科技情报, 2015, 47(2):4-5, 9. Wang N. The research situation of plasticity of the vegetation surface pattern[J]. Forestry Science and Technology Information, 2015, 47(2):4-5, 9.
[17] 杨贺雨, 卫海燕, 桑满杰, 尚忠慧, 毛亚娟, 王小蕊, 刘芳, 顾蔚. 华中五味子叶表型可塑性及环境因子对叶表型的影响[J]. 植物学报, 2016, 51(3):322-334. Yang HY, Wei HY, Sang MJ, Shang ZH, Mao YJ, Wang XR, Liu F, Gu W. Phenotypic plasticity of Schisandra sphenanthera leaf and the effect of environmental factors on leaf phenotype[J]. Chinese Bulletin of Botany, 2016, 51(3):322-334.
[18] 李永华, 卢琦, 吴波, 朱雅娟, 刘殿君, 张金鑫, 靳占虎. 干旱区叶片形态特征与植物响应和适应的关系[J]. 植物生态学报, 2012, 36(1):88-98. Li YH, Lu Q, Wu B, Zhu YJ, Liu DJ, Zhang JX, Jin ZH. A review of leaf morphology plasticity linked to plant response and adaptation characteristics in arid ecosystems[J]. Chinese Journal of Plant Ecology, 2012, 36(1):88-98.
[19] 杨贺雨. 华中五味子表型可塑性研究[D]. 西安:陕西师范大学, 2016:20-21. [20] Yang XQ, Kushwaha SPS, Saran S, Xu JC, Roy PS. Maxent modelling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills[J]. Ecol Eng, 2013, 51:83-87.
[21] 王常顺, 汪诗平. 植物叶片性状对气候变化的响应研究进展[J]. 植物生态学报, 2015, 39(2):206-216. Wang CS, Wang SP. A review of research on responses of leaf traits to climate change[J]. Chinese Journal of Plant Ecology, 2015, 39(2):206-216.
[22] 任红剑, 丰震, 乔谦, 安凯, 叶美静, 司芬芬, 张林, 孙忠奎. 元宝枫叶片形态特征的地理变异[J]. 西北林学院学报, 2018, 33(1):113-119. Ren HJ, Feng Z, Qiao Q, An K, Ye MJ, Si FF, Zhang L, Sun ZK. Geographic variation trend of leaf morphology in Acer truncatum[J]. Journal of Northwest Forestry University, 2018, 33(1):113-119.
[23] 胡启鹏, 郭志华, 孙玲玲, 王彬. 长白山林线树种岳桦幼树叶功能型性状随海拔梯度的变化[J]. 生态学报, 2013, 33(12):3594-3601. Hu QP, Guo ZH, Sun LL, Wang B. Response of leaf functional traits of Betula ermanii saplings to the altitudinal variation[J]. Acta Ecologica Sinica, 2013, 33(12):3594-3601.
[24] 岩旺, 马玉春, 苏源, 施丹丽, 赵昌佑, 殷根深. 轿子山急尖长苞冷杉叶片和气孔特征随海拔梯度变化研究[J]. 林业调查规划, 2018, 43(4):25-29, 41. Yan W, Ma YC, Su Y, Shi DL, Zhao CY, Yin GS. Variation of leaf and stomatal features of Abies georgei var. smithii in Mt. Jiaozi[J]. Forest Inventory and Planning, 2018, 43(4):25-29, 41.
[25] 赵平, 曾小平, 孙谷畴. 陆生植物对UV-B辐射增量响应研究进展[J]. 应用与环境生物学报, 2004, 10(1):122-127. Zhao P, Zeng XP, Sun GC. A review:Response of terrestrial plants to enhanced UV-B radiation[J]. Chinese Journal of Applied and Environmental Biology, 2004, 10(1):122-127.
[26] 陈莹婷, 许振柱. 植物叶经济谱的研究进展[J]. 植物生态学报, 2014, 38(10):1135-1153. Chen YT, Xu ZZ. Review on research of leaf economics spectrum[J]. Chinese Journal of Plant Ecology, 2014, 38(10):1135-1153.
[27] Blonder B, Violle C, Enquist BJ. Assessing the causes and scales of the leaf economics spectrum using venation networks in Populus tremuloides[J]. J Ecol, 2013, 101(4):981-989.
[28] Schlichting CD, Levin DA. Phenotypic plasticity of annual Phlox:Tests of some hypotheses[J]. Amer J Bot, 1984, 71(2):252-260.
-
期刊类型引用(9)
1. 杨奕颖,苏思霖,曹恩志,李红有,迟洪明,蔺凯,吴旭东,何文强,杨昊天. 沙漠大型光伏电站对固沙植物表型及生物量分配的影响. 中国沙漠. 2025(01): 162-172 . 百度学术
2. 杨建欣,龚买玉,马长乐,樊智丰,高灿,王李娟,邓莉兰. 大头茶属3种植物天然居群的叶表型性状特征研究. 植物科学学报. 2025(01): 21-31 . 本站查看
3. 冯云,张韫,范少辉,刘广路,魏松坡. 12种竹子的叶表型变异及其与环境因子的关系. 西北林学院学报. 2024(01): 147-153 . 百度学术
4. 马凡强,简尊吉,郭泉水,秦爱丽,梁洪海,杨永明. 长期水陆周期性变化条件下香根草形态性状和生物量分配的可塑性. 生态学报. 2023(02): 672-680 . 百度学术
5. 吴天彧,杨依康,周帅,张清舒,罗建. 色季拉山不同海拔梯度下三花杜鹃叶表型性状变异研究. 高原农业. 2022(01): 41-48 . 百度学术
6. 袁娅娟,白小明,朱雅楠,张毓婧,闫玉邦,张才忠,李玉杰. 甘肃野生草地早熟禾根茎扩展能力与内源激素含量的相关性研究. 中国生态农业学报(中英文). 2021(08): 1359-1369 . 百度学术
7. 牛雪婧,聂靖,杨自云,赵雪利. 河北木蓝叶表型对干旱胁迫的响应. 西北植物学报. 2020(04): 613-623 . 百度学术
8. 刘涛,吕婷,刘玉萍,梁瑞芳,陈志,苏旭. 青藏高原特有属——固沙草属表型变异及其对环境因子的响应. 西北植物学报. 2020(07): 1219-1229 . 百度学术
9. 艾喆,徐婷婷,周兆娜,马飞. 小叶锦鸡儿天然居群叶形态性状变异研究. 西北植物学报. 2020(09): 1595-1604 . 百度学术
其他类型引用(5)
计量
- 文章访问数: 786
- HTML全文浏览量: 0
- PDF下载量: 921
- 被引次数: 14