Genome-wide identification and analysis of the GRF transcription factor family in Moso bamboo (Phyllostachys edulis)
-
摘要: 利用生物信息学方法,于毛竹(Phyllostachys edulis(Carr.)Lehaie)全基因组中鉴定获得18个GRF转录因子,并对其理化特性、保守结构域、系统发育关系、miR396靶位点以及基因表达模式进行了分析。结果表明,18个PeGRF蛋白长度为170~551 aa,分子量为18.5~58.8 kD;这些PeGRF蛋白均具有QLQ和WRC结构域,部分PeGRF含有FFD和TQL保守结构域。对毛竹、拟南芥(Arabidopsis thaliana(L.)Heynh)和水稻(Oryza sativa L.)的系统进化分析结果显示,毛竹18个GRF可分为3个亚类,且单子叶植物毛竹和水稻的GRF转录因子亲缘关系更近。miR396靶位点预测分析结果发现,在13个PeGRF基因序列的编码区存在毛竹miR396结合位点;PeGRF基因表达模式分析结果显示,PeGRF主要在毛竹的竹笋中表达。Abstract: A total of 18 GRF transcription factors were identified from the Moso bamboo (Phyllostachys edulis (Carr.) Lehaie) genome by bioinformatics, with their physiological and chemical characteristics, conserved motifs, phylogenetic relationship, miR396 binding sites, and expression patterns also determined. Results showed that the length of the 18 GRF transcription factor proteins ranged from 170 to 551 aa and the molecular weights ranged from 18.5 to 58.8 kD. All 18 PeGRF proteins possessed two highly conserved regions (QLQ and WRC domains), with some PeGRF proteins also possessing FFD and TQL conserved domains. Phylogenetic analysis of the GRF transcription factors from Moso bamboo, Arabidopsis, and rice showed that the Moso bamboo GRF transcription factors were divided into three groups; furthermore, the GRF transcription factors exhibited strong homology, especially between Moso bamboo and rice. In addition, probable Moso bamboo miR396 binding sites were found in 13 PeGRF genes. Expression analysis showed that all PeGRF genes were expressed predominantly in actively growing and developing tissues, such as young bamboo shoots. This research provides a reference for further functional analysis of GRF transcription factors in Moso bamboo.
-
Keywords:
- Moso bamboo (Phyllostachys edulis) /
- GRF /
- Gene family /
- Expression analysis
-
-
[1] 马超, 原佳乐, 张苏, 贾琦石, 冯雅岚. GRF转录因子对植物生长发育及胁迫响应调控的分子机制[J]. 核农学报, 2017, 31(11):2145-2153. Ma C, Yuan JL, Zhang S, Jia QS, Feng YL. The molecular mechanisms of growth-regulating factors (GRFs) in plant growth, development and stress response[J]. Journal of Nuclear Agricultural Sciences, 2017, 31(11):2145-2153.
[2] Van der Knaap E, Kim JH, Kende H. A novel gibberellin-induced gene from rice and its potential regulatory role in stem growth[J]. Plant Physiol, 2000, 122(3):695-704.
[3] Kim JH, Choi D, Kende H. The AtGRF family of putative transcription factors is involved in leaf and cotyledon growth in Arabidopsis[J]. Plant J, 2003, 36(1):94-104.
[4] Zhang DF, Li B, Jia GQ, Zhang TF, Dai JR, et al. Isolation and characterization of genes encoding GRF transcription factors and GIF transcriptional coactivators in Maize (Zea mays L.)[J]. Plant Sci, 2008, 175(6):809-817.
[5] Liu J, Hua W, Yang HL, Zhan GM, Li RJ, et al. The BnGRF2 gene (GRF2-like gene from Brassica napus) enhances seed oil production through regulating cell number and plant photosynthesis[J]. J Exp Bot, 2012, 63(10):3727-3740.
[6] Wu ZJ, Wang WL, Zhuang J. Developmental processes and responses to hormonal stimuli in tea plant (Camellia sinensis) leaves are controlled by GRF and GIF gene families[J]. Funct Integr Genomics, 2017, 17(5):503-512.
[7] Wu L, Zhang D, Xue M, Qian J, He Y, Wang S. Overexpression of the maizeGRF10, an endogenous truncated growth-regulating factor protein, leads to reduction in leaf size and plant height[J]. J Integr Plant Biol, 2014, 56(11):1053-1063.
[8] Kuijt SJH, Greco R, Agalou A, Shao JX,'tHoen CC, et al. Interaction between the growth-regulating factor and knotted1-like homeobox families of transcription factors[J]. Plant Physiol, 2014, 164(4):1952-1966.
[9] Bazin J, Khan GA, Combier JP, Bustos-Sanmamed P, Debernardi JM, et al. MiR396 affects mycorrhization and root meristem activity in the legume Medicago truncatula[J]. Plant J, 2013, 74(6):920-934.
[10] 刘玲童, 王台. miR396-GRF模块:水稻分子育种的新资源[J]. 植物学报, 2016, 51(2):148-151. Liu LT, Wang T. miR396-GRF Modules:A new prospective on rice molecular breeding[J]. Chinese Bulletin of Botany, 2016, 51(2):148-151.
[11] Rodriguez RE, Mecchia MA, Debernardi JM, Schommer C, Weigel D, Palatnik JF. Control of cell proliferation in Arabidopsis thaliana by microRNA miR396[J]. Development, 2010, 137(1):103-112.
[12] 袁佳丽, 温国胜, 张明如, 张汝民, 蔡先锋, 等. 毛竹快速生长期的水势变化特征[J]. 浙江农林大学学报, 2015, 32(5):722-728. Yuan JL, Wen GS, Zhang MR, Zhang RM, Cai XF, et al. Water potential with Phyllostachys edulis in its fast-growth periods[J]. Journal of Zhejiang A & F University, 2015, 32(5):722-728.
[13] 曹福亮, 楼崇. 毛竹林出笋与幼竹生长发育规律的研究[J]. 竹子研究汇刊, 1991, 10(1):64-71. Cao FL, Lou C. A study on the laws of bamboo shooting and the growth and development of young bamboo of Phyllostachys pubescens[J]. Journal of Bamboo Research, 1991, 10(1):64-71.
[14] 丁兴萃. 毛竹笋体生长发育过程中内源激素的动态分析[J]. 竹子研究汇刊, 1997, 16(2):53-62. Ding XC. Dynamic analysis for endogenous phytohormones of bamboo shoots (Phyllostachys heterocycla var. pubescens) during different growth and differentiation stag[J]. Journal of Bamboo Research, 1997, 16(2):53-62.
[15] 董丽娜. 毛竹秆茎高生长的发育解剖研究[D]. 南京:南京林业大学, 2007. [16] 崔凯. 毛竹茎秆快速生长的机理研究[D]. 北京:中国林业科学研究院, 2011. [17] 方楷, 杨光耀, 杨清培, 黄俊宝, 施建敏, 于芬. 毛竹成竹过程中内源激素动态变化[J]. 江西农业大学学报, 2011, 33(6):1107-1111. Fang K, Yang GY, Yang QP, Huang JB, Shi JM, Yu F. Dynamic changes of endogenesis hormone in bamboo formation course (Phyllostachys edulis)[J]. Acta Agriculturae Universitatis Jiangxiensis, 2011, 33(6):1107-1111.
[18] Peng Z, Zhang C, Zhang Y, Hu T, Mu S, et al. Transcriptome sequencing and analysis of the fast growing shoots of moso bamboo (Phyllostachys edulis)[J]. PLoS One, 2013a, 8(11):e78944.
[19] Choi D, Kim JH, Kende H. Whole genome analysis of the OsGRF gene family encoding plant-specific putative transcription activators in rice (Oryza sativa L.)[J]. Plant Cell Physiol, 2004, 45(7):897-904.
[20] Wang F, Qiu N, Ding Q, Li J, Zhang Y, et al. Genome-wide identification and analysis of the growth-regulating factor family in Chinese cabbage (Brassica rapa L. ssp. pekinensis)[J]. BMC Genomics, 2014, 15(1):807.
[21] Peng Z, Lu Y, Li L, Zhao Q, Feng Q, et al. The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla)[J]. Nat Genet, 2013, 45(4):456-461.
[22] Zhao H, Peng Z, Fei B, Li L, Hu T, et al. BambooGDB:a bamboo genome database with functional annotation and an analysis platform[J]. Database (Oxford), 2014:bau006.
[23] Omidbakhshfard MA, Proost S, Fujikura U, Mueller-Roeber B. Growth-regulating factors (GRFs):A small transcription factor family with important functions in plant biology[J]. Mol Plant, 2015, 8(7):998-1010.
[24] Liu X, Guo LX, Jin LF, Liu YZ, Liu T, et al. Identification and transcript profiles of citrus growth-regulating factor genes involved in the regulation of leaf and fruit development[J]. Mol Biol Rep, 2016, 43(10):1059-1067.
[25] Kim JH, Tsukaya H. Regulation of plant growth and deve-lopment by the growth-regulating factor and GRF-interacting factor duo[J]. J Exp Bot, 2015, 66(20):6093-6107.
[26] Gao F, Wang K, Liu Y, Chen Y, Chen P, et al. Blocking miR396 increases rice yield by shaping inflorescence architecture[J]. Nat Plants, 2015, 2:15196.
-
期刊类型引用(9)
1. 吴秀兰,彭华丹,唐文武. 白菜GRF转录因子家族全基因组鉴定、进化及表达模式分析. 分子植物育种. 2023(24): 8013-8019 . 百度学术
2. 魏春梅,蔡斌,陶宇蝶,李林菊,赵秋燕,周敏,黄美娟,黄海泉. 滇水金凤花距发育相关基因GRF的克隆及表达分析. 植物科学学报. 2022(05): 669-676 . 本站查看
3. 叶正,高崇伦,Zakaria Gagoshidze,舒黄英,包文龙,朱婕,成善汉,朱国鹏,汪志伟. 中国辣椒低温响应转录因子CBF全基因组鉴定与分析. 分子植物育种. 2021(15): 4903-4910 . 百度学术
4. 娄永峰,宋晓琛,孙化雨,高志民. 毛竹PeGRF1基因克隆及初步功能分析. 分子植物育种. 2021(21): 7084-7091 . 百度学术
5. 陈俊,屈志广,方远鹏,蒋君梅,李向阳,谢鑫. 高粱GRF基因家族鉴定及SbGRF4原核表达分析. 植物保护学报. 2020(04): 929-938 . 百度学术
6. 刘蒲东,张舒婷,陈晓慧,苏立遥,姚德恒,李汉生,张梓浩,陈裕坤,林玉玲,赖钟雄. 龙眼GRF家族全基因组鉴定及表达模式. 应用与环境生物学报. 2020(02): 236-245 . 百度学术
7. 徐小强,刘安平,娄永峰. 毛竹PeGRF5基因的克隆及表达分析. 南方林业科学. 2020(05): 44-48 . 百度学术
8. 田娜,刘范,伍俊为,刘嘉鹏,李丹,付帅,黄玉吉,程春振. 香蕉GRF基因家族的全基因组鉴定及表达分析. 果树学报. 2020(12): 1821-1835 . 百度学术
9. 徐秀荣,杨克彬,王思宁,高志民. 毛竹bHLH转录因子的鉴定及其在干旱和盐胁迫条件下的表达分析. 植物科学学报. 2019(05): 610-620 . 本站查看
其他类型引用(5)
计量
- 文章访问数: 944
- HTML全文浏览量: 1
- PDF下载量: 1092
- 被引次数: 14