Effects of drought and nitrogen application on the growth and chlorophyll fluorescence characteristics of Dalbergia odorifera T. Chen - Hevea brasiliensis Muell. Arg seedlings
-
摘要:
以降香黄檀(Dalbergia odorifera T. Chen)和橡胶树(Hevea brasiliensis Muell. Arg)为研究材料,探究干旱、施氮联合处理对幼苗生长、叶绿素荧光特性及两者互作效应的影响。结果显示,同一氮素水平下,干旱胁迫显著提高了幼苗的初始荧光(Fo)和非光化学猝灭系数(NPQ),但降低了株高增量、基径、叶长、总叶绿素含量、PSⅡ潜在活性(Fv / Fo)、PSⅡ最大光化学效率(Fv / Fm)和电子传递速率(ETR)。同一水分水平下,施氮处理组植株有更好的生长态势,且对降香黄檀的促进作用强于橡胶树;干旱与施氮联合处理显著影响降香黄檀的分支数和橡胶树的株高增量、叶柄长、叶绿素a含量、总叶绿素含量及类胡萝卜素含量。混栽对降香黄檀和湿润条件下的橡胶树有促进作用,但在干旱条件下降香黄檀显著抑制橡胶树的生长和光合性能。研究结果表明施氮可减轻干旱胁迫对两树种的不利影响,且均在施氮湿润处理组下具有最佳的生长、光合色素积累状况。此外,土壤水分变化改变了降香黄檀-橡胶树的互作效应。
Abstract:Dalbergia odorifera T. Chen and Hevea brasiliensis Muell. Arg were used to explore the effects of drought and nitrogen application on the growth, chlorophyll fluorescence characteristics, and interaction effects of the seedlings. Results showed that under the same nitrogen level, drought stress significantly increased the fluorescence parameters Fo and NPQ of the seedlings, but decreased plant height, basal diameter, leaf length, total chlorophyll, Fv/Fo, Fv/Fm, and ETR. Under the same water level, plants in the nitrogen application group exhibited better growth performance, and the promotion effects on D. odorifera were stronger than that on H. brasiliensis. Combined drought treatment and nitrogen application significantly affected the number of branches in D. odorifera and plant height increment, petiole length, chlorophyll a content, total chlorophyll content, and carotenoid content in H. brasiliensis. Mixed planting promoted the growth and development of D. odorifera and H. brasiliensis under humid conditions, while D. odorifera significantly inhibited the growth and photosynthetic performance of H. brasiliensis under drought conditions. These results showed that nitrogen application could alleviate the adverse effects of drought stress on the two species, and plant growth and photosynthetic pigment accumulation showed the best performance under nitrogen application in well-water. In addition, variations in soil moisture could change the interaction effects between D. odorifera and H. brasiliensis.
-
-
图 1 不同处理下降香黄檀和橡胶树幼苗的株高增量、基径差异
不同大小写字母分别代表混栽和纯栽幼苗不同处理间差异显著(P < 0.05)。* 和** 分别表示同一处理下,不同栽植模式的降香黄檀或橡胶树幼苗在P < 0.05和P < 0.01水平上差异显著、极显著。下同。
Figure 1. Differences in plant height increment and basal diameter of Dalbergia odorifera and Hevea brasiliensis seedlings under different treatments
Different uppercase/lowercase letters represent significant differences between different treatments of mixed and pure seedlings, respectively (P < 0.05). * and ** indicate significant difference and extremely significant difference at P < 0.05 and P < 0.01 levels in D. odorifera or H. brasiliensis seedlings with different planting patterns under the same treatment, respectively. Same below.
表 1 栽植模式、水分和氮素及其交互作用对两树种株高增量、基径的影响
Table 1 Effects of planting pattern, water, nitrogen, and their interactions on height increment and basal diameter of two tree species
物种
Species参数
ParameterC W N C × W C × N W × N C × W × N 降香黄檀
Dalbergia odorifera株高增量 0.000** 0.000** 0.000** 0.052 0.391 0.870 0.257 基径 0.000** 0.000** 0.002** 0.976 0.061 0.874 0.413 橡胶树
Hevea brasiliensis株高增量 0.000** 0.000** 0.000** 0.000** 0.401 0.021* 0.057 基径 0.596 0.000** 0.018* 0.000** 0.236 0.978 0.948 注:C,栽植模式;W,水分水平;N,氮素水平。表中数值为P值。*,P < 0.05;**,P < 0.01。
Notes: C, planting pattern; W, water level; N, nitrogen level. Values are P-values.表 2 不同处理条件对降香黄檀和橡胶树幼苗叶片性状的影响
Table 2 Effects of different treatments on leaf traits of Dalbergia odorifera and Hevea brasiliensis seedlings
栽植模式
Planting pattern处理
Treatment降香黄檀
D. odorifera橡胶树
H. brasiliensis叶长
LL / cm叶宽
LW / cm分支数增量
INB / twig/plant总叶面积
TA / cm2叶长
LL / cm叶宽
LW / cm叶柄长
LPL / cm平均单叶面积
ALA / cm2纯栽 CW 6.18 ± 0.08b 2.86 ± 0.09b 24.88 ± 0.52b 4605.05 ± 179.48b 8.58 ± 0.26a 2.90 ± 0.07a 7.68 ± 0.27b 7.92 ± 0.64a NW 6.73 ± 0.10a 3.20 ± 0.07a 34.00 ± 1.19a 6044.16 ± 630.23a 10.31 ± 1.04a 3.03 ± 0.23a 9.13 ± 0.13a 9.37 ± 0.94a CD 5.50 ± 0.12c 2.55 ± 0.06c 13.38 ± 0.47d 1680.67 ± 48.67c 8.43 ± 0.60a 2.93 ± 0.14a 7.50 ± 0.35b 7.70 ± 1.18a* ND 6.50 ± 0.26ab 2.88 ± 0.09b 18.13 ± 0.43c 2558.30 ± 128.05c 9.08 ± 0.20a 2.94 ± 0.13a 7.43 ± 0.15b 7.80 ± 0.91a 混栽 CW 6.44 ± 0.15B 3.16 ± 0.11B 35.00 ± 0.91B** 4842.23 ± 301.98B 8.98 ± 0.21B 2.98 ± 0.12A 7.63 ± 0.47B 8.18 ± 1.00AB NW 7.66 ± 0.33A* 3.40 ± 0.15A 41.75 ± 1.25A** 6178.16 ± 265.31A 11.06 ± 0.22A 3.10 ± 0.15A 9.78 ± 0.65A 10.38 ± 3.17A CD 5.29 ± 0.11C 2.53 ± 0.08C 17.00 ± 0.41C** 2360.02 ± 44.76C** 8.00 ± 0.29C 2.79 ± 0.06A 6.74 ± 0.51B 3.39 ± 0.45B ND 6.30 ± 0.11B 2.89 ± 0.08B 18.25 ± 0.25C 2659.07 ± 139.59C 8.93 ± 0.22B 2.91 ± 0.09A 7.38 ± 0.24B 6.00 ± 0.67AB FC 0.129 0.076 0.000** 0.160 0.575 0.947 0.848 0.227 FW 0.000** 0.000** 0.000** 0.000** 0.003** 0.268 0.000** 0.010* FN 0.000** 0.000** 0.000** 0.000** 0.001** 0.314 0.001** 0.117 FC × W 0.004** 0.058 0.000** 0.611 0.253 0.394 0.210 0.070 FC × N 0.182 0.770 0.008** 0.399 0.735 0.761 0.210 0.410 FW × N 0.639 0.659 0.000** 0.056 0.081 0.761 0.011* 0.811 FC × W × N 0.198 0.618 0.660 0.555 0.849 0.761 0.991 0.659 注:表中数据为平均值 ± 标准误。上方数据不同大/小写字母分别代表混栽和纯栽幼苗不同处理间差异显著(P < 0.05)。* 和** 分别表示同一处理下不同栽植模式的降香黄檀或橡胶树幼苗在P < 0.05和 P < 0.01水平上差异显著。下方数据为栽植模式(C)、水分(W)、氮素(N)及其交互作用对降香黄檀和橡胶树幼苗各指标的影响,表中数值为P值。*,P < 0.05;**,P < 0.01。 Notes: Data in the table are Mean ± Standard error. Upper data, different uppercase/lowercase letters represent significant differences between different treatments of mixed and pure seedlings, respectively (P < 0.05). *, significant differences in D. odorifera or H. brasiliensis seedlings with different planting patterns under the same treatment (P < 0.05); **, extremely significant differences in D. odorifera and H. brasiliensis seedlings with different planting patterns under the same treatment (P < 0.01). Below data, effects of planting pattern (C), water (W), nitrogen (N), and their interactions on various indicators of D. odorifera and H. brasiliensis seedlings. Values are P-values. *, P < 0.05; **, P < 0.01. 表 3 不同处理条件对降香黄檀和橡胶树幼苗光合色素含量的影响
Table 3 Effects of different treatment conditions on content of photosynthetic pigments in Dalbergia odorifera and Hevea brasiliensis seedlings
栽植模式
Planting
pattern处理
Treatment降香黄檀
D. odorifera橡胶树
H. brasiliensis叶绿素a
Chl a / μg/g叶绿素b
Chl b / μg/g总叶绿素
Chltotal / μg/g类胡萝卜素
Caro / μg/g叶绿素a
Chl a / μg/g叶绿素b
Chl b / μg/g总叶绿素
Chltotal / μg/g类胡萝卜素
Caro / μg/g纯栽 CW 1127.30 ± 39.42ab 477.44 ± 35.77ab 1604.74 ± 75.07ab 282.10 ± 4.62a 772.41 ± 4.31b 265.86 ± 1.64a 1038.27 ± 5.03b 323.62 ± 2.40a NW 1180.34 ± 11.89a 507.18 ± 17.59a 1687.52 ± 27.86a 323.59 ± 22.72a 854.60 ± 32.33a 279.14 ± 8.36a 1117.00 ± 41.80a 336.63 ± 16.17a CD 1077.24 ± 16.13c 398.84 ± 17.35c 1476.08 ± 14.53b 285.02 ± 28.52a 656.72 ± 9.91c** 233.95 ± 3.41b** 890.67 ± 11.35c** 196.23 ± 1.15c** ND 1121.75 ± 12.11ab 433.58 ± 5.33bc 1555.33 ± 17.14ab 313.58 ± 10.48a 702.96 ± 12.28c** 240.26 ± 3.74b** 943.22 ± 14.19c** 291.15 ± 4.73b** 混栽 CW 1172.70 ± 22.3AB* 507.75 ± 15.83A 1680.45 ± 37.95AB 309.94 ± 6.62C* 887.56 ± 5.03B** 389.88 ± 9.80B** 1277.44 ± 13.64B** 331.49 ± 43.94A NW 1227.21 ± 8.80A 508.30 ± 9.91A 1735.51 ± 18.71A 385.25 ± 4.49A* 980.66 ± 6.76A** 508.08 ± 12.07A** 1468.39 ± 11.01A** 353.16 ± 4.88A CD 1151.00 ± 34.60B 429.86 ± 41.54B 1580.86 ± 76.12B 338.81 ± 5.17B 285.17 ± 11.42D 92.55 ± 5.58D 377.71 ± 16.53D 144.28 ± 4.86C ND 1166.60 ± 10.02AB* 441.54 ± 9.04AB 1608.15 ± 18.94AB 373.73 ± 15.95A* 563.26 ± 5.59C 191.34 ± 4.34C 754.60 ± 9.33C 233.36 ± 3.14B FC 0.003** 0.281 0.030* 0.000** 0.000** 0.000** 0.046* 0.086 FW 0.006** 0.000** 0.001** 0.811 0.000** 0.000** 0.000** 0.000** FN 0.014* 0.241 0.056 0.000** 0.000** 0.000** 0.000** 0.000** FC × W 0.680 0.907 0.783 0.571 0.000** 0.000** 0.000** 0.010* FC × N 0.667 0.421 0.520 0.354 0.000** 0.000** 0.000** 0.953 FW × N 0.459 0.803 0.800 0.222 0.000** 0.194 0.006** 0.005** FC × W × N 0.634 0.925 0.844 0.524 0.000** 0.535 0.000** 0.764 注:表中数据为平均值 ± 标准误。上方数据不同大/小写字母分别代表混栽和纯栽幼苗不同处理间差异显著(P < 0.05)。* 和** 分别表示同一处理下不同栽植模式的降香黄檀或橡胶树幼苗在P < 0.05和 P < 0.01水平上差异显著。下方数据为栽植模式(C)、水分(W)、氮素(N)及其交互作用对降香黄檀和橡胶树幼苗各指标的影响,表中数值为P值。*,P < 0.05;**,P < 0.01。下同。 Notes: Data in the table are Mean ± Standard error. Upper data, different uppercase/lowercase letters represent significant differences between different treatments of mixed and pure seedlings, respectively (P < 0.05). *, significant differences in D. odorifera or H. brasiliensis seedlings with different planting patterns under the same treatment (P < 0.05); **, extremely significant differences in D. odorifera and H. brasiliensis seedlings with different planting patterns under the same treatment (P < 0.01). Below data, effects of planting pattern (C), water (W), nitrogen (N), and their interactions on various indicators of D. odorifera and H. brasiliensis seedlings. Values are P-values. *, P < 0.05; **, P < 0.01. Same below. 表 4 不同处理条件对降香黄檀和橡胶树幼苗叶绿素荧光参数的影响
Table 4 Effects of different treatments on chlorophyll fluorescence parameters of Dalbergia odorifera and Hevea brasiliensis seedlings
栽植
模式
Planting pattern处理
Treatment降香黄檀
D. odorifera橡胶树
H. brasiliensis初始荧光Fo PS Ⅱ潜在活性
Fv / FoPS Ⅱ最大光化学效率Fv / Fm 电子传递速率ETR 初始荧光Fo PS Ⅱ潜在活性
Fv / FoPS Ⅱ最大光化学效率Fv / Fm 电子传递速率ETR 纯栽 CW 354.00 ± 27.05ab 4.76 ± 0.29ab 0.82 ± 0.01a 40.48 ± 7.43b 317.75 ± 26.20a 4.14 ± 0.34ab 0.81 ± 0.01ab 33.65 ± 2.22a NW 318.75 ± 8.11b* 5.19 ± 0.13a 0.83 ± 0.00a 72.03 ± 13.44a 300.50 ± 22.48a 4.98 ± 0.21a 0.83 ± 0.01a 33.55 ± 2.20a CD 404.00 ± 38.36a 3.62 ± 0.15c 0.78 ± 0.01b 40.30 ± 4.90b 341.25 ± 34.78a 3.52 ± 0.52b 0.77 ± 0.03b 26.23 ± 1.84b ND 286.50 ± 17.05b 4.44 ± 0.13b 0.82 ± 0.00a 51.43 ± 5.86ab 337.75 ± 5.02a 4.15 ± 0.16ab 0.81 ± 0.01ab 31.68 ± 2.45ab 混栽 CW 285.50 ± 26.01A 4.84 ± 0.41AB 0.83 ± 0.01AB 53.95 ± 2.54AB 292.25 ± 14.34AB 4.43 ± 0.08AB 0.82 ± 0.00AB 31.08 ± 3.07A NW 258.75 ± 15.50A 5.47 ± 0.55A 0.84 ± 0.01A 63.85 ± 5.61A 272.50 ± 16.83B 5.19 ± 0.31A 0.84 ± 0.01A 33.05 ± 3.27A CD 321.75 ± 22.05A 3.87 ± 0.26B 0.79 ± 0.01B 45.65 ± 2.31B 381.25 ± 26.31A 3.17 ± 0.29C 0.76 ± 0.01C 19.60 ± 2.92A ND 261.00 ± 9.60A 4.76 ± 0.26AB 0.82 ± 0.00AB 60.70 ± 4.77A 328.75 ± 44.30AB 4.00 ± 0.31B 0.79 ± 0.01B 27.95 ± 6.25A FC 0.001** 0.293 0.407 0.304 0.766 0.994 0.784 0.163 FW 0.386 0.000** 0.000** 0.102 0.011* 0.000** 0.000** 0.010* FN 0.001** 0.004** 0.004** 0.002** 0.225 0.002** 0.008** 0.105 FC × W 0.747 0.807 0.710 0.628 0.269 0.251 0.450 0.443 FC × N 0.316 0.756 0.976 0.360 0.497 0.896 0.995 0.598 FW × N 0.080 0.467 0.075 0.429 0.801 0.873 0.436 0.213 FC × W × N 0.456 0.881 0.771 0.190 0.539 0.742 0.995 0.930 表 5 栽植模式、水分和氮素及其交互作用对两树种qP、NPQ的影响
Table 5 Effects of planting pattern, water, nitrogen, and their interactions on qP and NPQ of two tree species
物种
Species参数
ParameterC W N C × W C × N W × N C × W × N 降香黄檀
D. odoriferaqP 0.515 0.289 0.010* 0.650 0.608 0.515 0.187 NPQ 0.539 0.013* 0.528 0.938 0.904 0.710 0.942 橡胶树
H. brasiliensisqP 0.423 0.144 0.203 0.302 0.812 0.712 0.373 NPQ 0.073 0.035* 0.045* 0.657 0.670 0.113 0.787 -
[1] Geng SC,Chen ZJ,Han SJ,Wang F,Zhang JH. Rainfall reduction amplifies the stimulatory effect of nitrogen addition on N2O emissions from a temperate forest soil[J]. Sci Rep,2017,7:43329. doi: 10.1038/srep43329
[2] 陈亚宁,李玉朋,李稚,刘永昌,黄文静,等. 全球气候变化对干旱区影响分析[J]. 地球科学进展,2022,37(2):111−119. doi: 10.11867/j.issn.1001-8166.2022.006 Chen YN,Li YP,Li Z,Liu YC,Huang WJ,et al. Analysis of the impact of global climate change on dryland areas[J]. Advances in Earth Science,2022,37 (2):111−119. doi: 10.11867/j.issn.1001-8166.2022.006
[3] 罗海婧,张永清,石艳华,李鑫,张耀文. 不同红小豆品种幼苗对干旱胁迫的生理响应[J]. 植物科学学报,2014,32(5):493−501. doi: 10.11913/PSJ.2095-0837.2014.50493 Luo HJ,Zhang YQ,Shi YH,Li X,Zhang YW. Effects of drought stress on the physiological characteristics of different adzuki bean varieties at the seedling stage[J]. Plant Science Journal,2014,32 (5):493−501. doi: 10.11913/PSJ.2095-0837.2014.50493
[4] 孙娅楠,赵杨,赵渊祥,曹海,龙建磊. 棕榈幼苗光合和叶绿素荧光对干旱胁迫及复水的响应[J]. 中南林业科技大学学报,2021,41(9):45−52. doi: 10.14067/j.cnki.1673-923x.2021.09.005 Sun YN,Zhao Y,Zhao YX,Cao H,Long JL. Effects of drought and rewatering on photosynthetic characteristics and chlorophyll fluorescence of Trachycarpus fortunei seedlings[J]. Journal of Central South University of Forestry & Technology,2021,41 (9):45−52. doi: 10.14067/j.cnki.1673-923x.2021.09.005
[5] Babaei K,Moghaddam M,Farhadi N,Ghasemi Pirbalouti A. Morphological,physiological and phytochemical responses of Mexican marigold (Tagetes minuta L. ) to drought stress[J]. Sci Hortic,2021,284:110116. doi: 10.1016/j.scienta.2021.110116
[6] 张金凤,陈佩珍,孙晓波,胡兴峰,季孔庶. 干旱对马尾松幼苗光合作用及相关生理的影响[J]. 中国农学通报,2021,37(1):32−38. doi: 10.11924/j.issn.1000-6850.casb20200100002 Zhang JF,Chen PZ,Sun XB,Hu XF,Ji KS. Effects on photosynthetic and resistant physiological characteristics of Pinus massoniana seedlings under drought stress[J]. Chinese Agricultural Science Bulletin,2021,37 (1):32−38. doi: 10.11924/j.issn.1000-6850.casb20200100002
[7] Ren HJ,Chen YC,Wang XT,Wong GTF,Cohen AL,et al. 21st-century rise in anthropogenic nitrogen deposition on a remote coral reef[J]. Science,2017,356 (6339):749−752. doi: 10.1126/science.aal3869
[8] Schlesinger WH. On the fate of anthropogenic nitrogen[J]. Proc Natl Acad Sci USA,2009,106 (1):203−208. doi: 10.1073/pnas.0810193105
[9] 裴昊斐,高卫东,方娇阳,叶可可,祝燕,等. 模拟氮沉降对一年生香椿幼苗生长和光合特性的影响[J]. 中国生态农业学报,2019,27(10):1546−1552. Pei HF,Gao WD,Fang JY,Ye KK,Zhu Y,et al. Effects of simulated nitrogen deposition on growth and photosynthetic characteristics of one-year-old Toona sinensis seedlings[J]. Chinese Journal of Eco-Agriculture,2019,27 (10):1546−1552.
[10] 韦献东,施福军,梁小春,陆海燕,刘天泉,王凌晖. 模拟氮沉降对桢楠幼苗生长的影响[J]. 北方园艺,2020(8):74−79. Wei XD,Shi FJ,Liang XC,Lu HY,Liu TQ,Wang LH. Effects of simulated nitrogen deposition on the growth of Phoebe zhennan seedlings[J]. Northern Horticulture,2020 (8):74−79.
[11] Xiong X,Chang LY,Khalid M,Zhang JJ,Huang DF. Alleviation of drought stress by nitrogen application in Brassica campestris ssp. Chinensis L.[J]. Agronomy,2018,8 (5):66. doi: 10.3390/agronomy8050066
[12] Zhang SK,Shao L,Sun ZY,Huang Y,Liu N. An atmospheric pollutant (inorganic nitrogen) alters the response of evergreen broad-leaved tree species to extreme drought[J]. Ecotoxicol Environ Saf,2020,187:109750. doi: 10.1016/j.ecoenv.2019.109750
[13] Meng B,Shi BK,Zhong SZ,Chai H,Li SX. Drought sensitivity of aboveground productivity in Leymus chinensis meadow steppe depends on drought timing[J]. Oecologia,2019,191 (3):685−696. doi: 10.1007/s00442-019-04506-w
[14] 徐楠楠. 水分、光照和氮沉降对五种暖温带典型乔木幼苗生理生态学特性的影响[D]. 济南: 山东大学, 2015: 1−133. [15] Cheng HY,Wei M,Wang S,Wu BD,Wang CY. Atmospheric N deposition alleviates the unfavorable effects of drought on wheat growth[J]. Braz J Bot,2020,43 (2):229−238. doi: 10.1007/s40415-020-00598-4
[16] Wang S,Wei M,Wu BD,Cheng HY,Jiang K,Wang CY. Does N deposition mitigate the adverse impacts of drought stress on plant seed germination and seedling growth?[J]. Acta Oecol,2020,109:103650. doi: 10.1016/j.actao.2020.103650
[17] 蒲玉瑾,张丽佳,苗灵凤,杨帆. 不同钙离子浓度对低温下降香黄檀幼苗生长及生理特性的影响[J]. 植物科学学报,2019,37(2):251−259. doi: 10.11913/PSJ.2095-0837.2019.20251 Pu YJ,Zhang LJ,Miao LF,Yang F. Effects of different calcium concentrations on the growth and physiological characteristics of Dalbergia odorifera under low temperatures[J]. Plant Science Journal,2019,37 (2):251−259. doi: 10.11913/PSJ.2095-0837.2019.20251
[18] 郭璐瑶,苗灵凤,李大东,向丽珊,杨帆. 施氮和增温对降香黄檀幼苗生长发育和生理特征的影响[J]. 植物科学学报,2022,40(2):259−268. doi: 10.11913/PSJ.2095-0837.2022.20259 Guo LY,Miao LF,Li DD,Xiang LS,Yang F. Effects of nitrogen addition and warming on growth,development,and physiological characteristics of Dalbergia odorifera T. Chen seedlings[J]. Plant Science Journal,2022,40 (2):259−268. doi: 10.11913/PSJ.2095-0837.2022.20259
[19] 李国尧,王权宝,李玉英,周双喜,于海英. 橡胶树产胶量影响因素[J]. 生态学杂志,2014,33(2):510−517. doi: 10.13292/j.1000-4890.2014.0036 Li GY,Wang QB,Li YY,Zhou SX,Yu HY. A review of influencing factors on latex yield of Hevea brasiliensis[J]. Chinese Journal of Ecology,2014,33 (2):510−517. doi: 10.13292/j.1000-4890.2014.0036
[20] 祁栋灵,孙瑞,谢贵水,杨川,陈帮乾,等. 海南西部低割龄橡胶林土壤水分季节变化特征及其对气象因子响应研究初报[J]. 生态科学,2017,36(6):44−48. Qi DL,Sun R,Xie GS,Yang C,Chen BQ,et al. A preliminary study on seasonal changes of soil moisture in rubber plantation of low tapping years and its responses to meteorological factors in western Hainan Island,China[J]. Ecological Science,2017,36 (6):44−48.
[21] Meng S,Ma HB,Li ZS,Yang FC,Wang SK,Lu JK. Impacts of nitrogen on physiological interactions of the hemiparasitic Santalum album and its N2-fxing host Dalbergia odorifera[J]. Trees,2021,35 (3):1039−1051. doi: 10.1007/s00468-021-02103-0
[22] Yao X,Lan Y,Liao L,Huang Y,Yu S,et al. Effects of nitrogen supply rate on photosynthesis,nitrogen uptake and growth of seedlings in a Eucalyptus/Dalbergia odorifera intercropping system[J]. Plant Biol,2022,24 (1):192−204. doi: 10.1111/plb.13341
[23] Xiang LS,Miao LF,Yang F. Drought and nitrogen application modulate the morphological and physiological responses of Dalbergia odorifera to different niche neighbors[J]. Front Plant Sci,2021,12:664122. doi: 10.3389/fpls.2021.664122
[24] 周璋. 氮磷添加对海南热带山地雨林碳循环的影响[D]. 北京: 北京大学, 2013: 1−137. [25] 高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006: 74−77. [26] 崔豫川,张文辉,李志萍. 干旱和复水对栓皮栎幼苗生长和生理特性的影响[J]. 林业科学,2014,50(7):66−73. Cui YC,Zhang WH,Li ZP. Effects of drought stress and rewatering on growth and physiological characteristics of Quercus variabilis seedlings[J]. Scientia Silvae Sinicae,2014,50 (7):66−73.
[27] 王铭涵,丁玎,张晨禹,高羲之,陈建姣,等. 干旱胁迫对茶树幼苗生长及叶绿素荧光特性的影响[J]. 茶叶科学,2020,40(4):478−491. doi: 10.3969/j.issn.1000-369X.2020.04.006 Wang MH,Ding D,Zhang CY,Gao XZ,Chen JJ,et al. Effects of drought stress on growth and chlorophyll fluorescence characteristics of tea seedlings[J]. Journal of Tea Science,2020,40 (4):478−491. doi: 10.3969/j.issn.1000-369X.2020.04.006
[28] Xu NN,Guo WH,Liu J,Du N,Wang RQ. Increased nitrogen deposition alleviated the adverse effects of drought stress on Quercus variabilis and Quercus mongolica seedlings[J]. Acta Physiol Plant,2015,37 (6):107. doi: 10.1007/s11738-015-1853-4
[29] Zhou XB,Zhang YM,Ji XH,Downing A,Serpe M. Combined effects of nitrogen deposition and water stress on growth and physiological responses of two annual desert plants in northwestern China[J]. Environ Exp Bot,2011,74:1−8. doi: 10.1016/j.envexpbot.2010.12.005
[30] 姚春娟,郭圣茂,马英超,赖晓莲,杨肖华. 干旱胁迫对4种决明属植物光合作用和叶绿素荧光特性的影响[J]. 草业科学,2017,34(9):1880−1888. Yao CJ,Guo SM,Ma YC,Lai XL,Yang XH. Effect of drought stress on characteristics of photosynthesis and chlorophyll fluorescence of four species of Cassia[J]. Pratacultural Science,2017,34 (9):1880−1888.
[31] 李泽,谭晓风,卢锟,张琳,龙洪旭,等. 干旱胁迫对两种油桐幼苗生长、气体交换及叶绿素荧光参数的影响[J]. 生态学报,2017,37(5):1515−1524. Li Z,Tan XF,Lu K,Zhang L,Long HX,et al. Influence of drought stress on the growth,leaf gas exchange,and chlorophyll fluorescence in two varieties of tung tree seedlings[J]. Acta Ecologica Sinica,2017,37 (5):1515−1524.
[32] 吴敏,邓平,赵英,赵仕花,陈金妮,等. 喀斯特干旱环境对青冈栎叶片生长及叶绿素荧光动力学参数的影响[J]. 应用生态学报,2019,30(12):4071−4081. doi: 10.13287/j.1001-9332.201912.001 Wu M,Deng P,Zhao Y,Zhao SH,Chen JN,et al. Effects of drought on leaf growth and chlorophyll fluorescence kinetics parameters in Cyclobalanopsis glauca seedlings of Karst areas[J]. Chinese Journal of Applied Ecology,2019,30 (12):4071−4081. doi: 10.13287/j.1001-9332.201912.001
[33] 钟小莉,马晓东,吕豪豪,朱成刚,杨余辉. 干旱胁迫下氮素对胡杨幼苗生长及光合的影响[J]. 生态学杂志,2017,36(10):2777−2786. doi: 10.13292/j.1000-4890.201710.029 Zhong XL,Ma XD,Lü HH,Zhu CG,Yang YH. Effect of nitrogen on growth and photosynthesis of Populus euphratica seedlings under drought stress[J]. Chinese Journal of Ecology,2017,36 (10):2777−2786. doi: 10.13292/j.1000-4890.201710.029
[34] 李志元,江虹,王亚楠,秦亚楠,余婷,等. 施氮与水分胁迫对雪菊幼苗生长及生理的影响[J]. 新疆农业科学,2020,57(1):127−138. Li ZY,Jiang H,Wang YN,Qin YN,Yu T,et al. Effects of water stress and nitrogen application on growth and physiology of Coreopsis tinctoria seedlings[J]. Xinjiang Agricultural Sciences,2020,57 (1):127−138.
[35] Souza BD,Meiado MV,Rodrigues BM,Santos MG. Water relations and chlorophyll fluorescence responses of two leguminous trees from the Caatinga to different watering regimes[J]. Acta Physiol Plant,2010,32 (2):235−244. doi: 10.1007/s11738-009-0394-0
[36] 杨曾奖,徐大平,陈文平,黄烈健,李尚均,陈源. 华南地区桉树/相思混交种植的林木生长效应[J]. 应用生态学报,2009,20(10):2339−2344. doi: 10.13287/j.1001-9332.2009.0338 Yang CJ,Xu DP,Chen WP,Huang LJ,Li SJ,Chen Y. Growth effect of eucalyptus-acacia mixed plantation in South China[J]. Chinese Journal of Applied Ecology,2009,20 (10):2339−2344. doi: 10.13287/j.1001-9332.2009.0338
[37] 许峻模,潘婷,龙佳峰,汤文艳,田诗韵,叶绍明. 施氮及不同根系分隔模式对尾叶桉和降香黄檀幼苗生长及叶片生理特性的影响[J]. 西北植物学报,2018,38(6):1128−1137. doi: 10.7606/j.issn.1000-4025.2018.06.1128 Xu JM,Pan T,Long JF,Tang WY,Tian SY,Ye SM. Effect of nitrogen application on the growth and leaf physiological traits of Eucalyptus urophylla and Dalbergia odorifera seedlings under different root partitioning patterns[J]. Acta Botanica Boreali-Occidentalia Sinica,2018,38 (6):1128−1137. doi: 10.7606/j.issn.1000-4025.2018.06.1128
-
期刊类型引用(11)
1. 赵柳. 低温和外源钙胁迫对不同花生种子萌发和幼苗生长的影响. 现代园艺. 2025(03): 8-10 . 百度学术
2. 李大东,王海波,杨帆,苗灵凤,张娟,郭璐瑶,向丽珊. 富营养化水体水淹和水淹后干旱对降香黄檀生理生态的影响. 热带亚热带植物学报. 2024(05): 651-659 . 百度学术
3. 茶晓飞,孙丽娟,郭焕仙,段华超,董琼. 钙胁迫对白枪杆幼苗生长及矿质离子代谢的影响. 西北农林科技大学学报(自然科学版). 2024(11): 21-29 . 百度学术
4. 柳雪,王西娜,李雪芳,郝雯悦,霍庆柱,谭军利. 氯盐品种及其浓度对西瓜生长与根系活力的影响. 河南农业科学. 2023(03): 118-126 . 百度学术
5. 李丽君,苗灵凤,李大东,杨帆. 干旱、施氮对降香黄檀-橡胶树幼苗生长和叶绿素荧光特性的影响. 植物科学学报. 2023(03): 358-369 . 本站查看
6. 潘琪,武建强,贾慧,宁芳,张文菲,张熠可,韩爱谦,袁嘉玮. 外源钙对低温胁迫下梨生理特性的影响. 山西农业科学. 2022(02): 148-154 . 百度学术
7. 郭璐瑶,苗灵凤,李大东,向丽珊,杨帆. 施氮和增温对降香黄檀幼苗生长发育和生理特征的影响. 植物科学学报. 2022(02): 259-268 . 本站查看
8. 李小玲,华智锐,杨文怡,张飞. 低温胁迫高山杜鹃对外源氯化钙和脱落酸的响应. 贵州农业科学. 2022(11): 27-35 . 百度学术
9. 霍静,白京凡,乔虹,白晋华,郭红彦. 外源物质处理对大果榉扦插苗抗寒性的影响. 西北林学院学报. 2021(04): 131-137 . 百度学术
10. 伍宝朵,唐虎,胡丽松,范睿,杨建峰,周艳飞,郝朝运. 外源氯化钙对低温胁迫下胡椒抗寒生理指标的影响. 热带作物学报. 2020(02): 267-274 . 百度学术
11. 任城帅,李慧,翁小航,张淞著,刘丽颖,周永斌. 外源钙对水曲柳生长、光合特性及水分利用效率的影响. 沈阳农业大学学报. 2020(06): 663-669 . 百度学术
其他类型引用(14)