高级检索+

油棕(Elaeis guineensis)中果皮发育过程中miRNA的表达动态分析

方良, 梁远学, 李东栋, 曹献英, 郑育声

方良, 梁远学, 李东栋, 曹献英, 郑育声. 油棕(Elaeis guineensis)中果皮发育过程中miRNA的表达动态分析[J]. 植物科学学报, 2013, 31(3): 304-312. DOI: 10.3724/SP.J.1142.2013.30304
引用本文: 方良, 梁远学, 李东栋, 曹献英, 郑育声. 油棕(Elaeis guineensis)中果皮发育过程中miRNA的表达动态分析[J]. 植物科学学报, 2013, 31(3): 304-312. DOI: 10.3724/SP.J.1142.2013.30304
FANG Liang, LIANG Yuan-Xue, LI Dong-Dong, CAO Xian-Ying, ZHENG Yu-Sheng. Dynamic Expression Analysis of miRNAs during the Development Process of Oil Palm Mesocarp[J]. Plant Science Journal, 2013, 31(3): 304-312. DOI: 10.3724/SP.J.1142.2013.30304
Citation: FANG Liang, LIANG Yuan-Xue, LI Dong-Dong, CAO Xian-Ying, ZHENG Yu-Sheng. Dynamic Expression Analysis of miRNAs during the Development Process of Oil Palm Mesocarp[J]. Plant Science Journal, 2013, 31(3): 304-312. DOI: 10.3724/SP.J.1142.2013.30304
方良, 梁远学, 李东栋, 曹献英, 郑育声. 油棕(Elaeis guineensis)中果皮发育过程中miRNA的表达动态分析[J]. 植物科学学报, 2013, 31(3): 304-312. CSTR: 32231.14.SP.J.1142.2013.30304
引用本文: 方良, 梁远学, 李东栋, 曹献英, 郑育声. 油棕(Elaeis guineensis)中果皮发育过程中miRNA的表达动态分析[J]. 植物科学学报, 2013, 31(3): 304-312. CSTR: 32231.14.SP.J.1142.2013.30304
FANG Liang, LIANG Yuan-Xue, LI Dong-Dong, CAO Xian-Ying, ZHENG Yu-Sheng. Dynamic Expression Analysis of miRNAs during the Development Process of Oil Palm Mesocarp[J]. Plant Science Journal, 2013, 31(3): 304-312. CSTR: 32231.14.SP.J.1142.2013.30304
Citation: FANG Liang, LIANG Yuan-Xue, LI Dong-Dong, CAO Xian-Ying, ZHENG Yu-Sheng. Dynamic Expression Analysis of miRNAs during the Development Process of Oil Palm Mesocarp[J]. Plant Science Journal, 2013, 31(3): 304-312. CSTR: 32231.14.SP.J.1142.2013.30304

油棕(Elaeis guineensis)中果皮发育过程中miRNA的表达动态分析

基金项目: 国家自然科学基金项目(31160717, 31060259, 31260193);海南大学青年基金项目(qnjj1001);海南大学科研启动基金项目(kyqd1237)。
详细信息
    作者简介:

    方良(1987- ),男,海南大学硕士研究生,主要研究方向为植物基因工程(E-mail: fl030212@126.com)。

    通讯作者:

    郑育声,女,海南大学生物工程专业副教授,研究领域为植物生化与分子生物学(E-mail: hainanzyh@yahoo.com.cn)。

  • 中图分类号: S565.9;Q943.2

Dynamic Expression Analysis of miRNAs during the Development Process of Oil Palm Mesocarp

  • 摘要: 以CTAB法提取油棕(Elaeis guineensis)中果皮5个不同发育时期(G1~G5)的小RNA。从前期研究获得的油棕小RNA测序数据库中筛选12个候选miRNA,实时荧光定量PCR法(qRT-PCR)检测其在果实发育过程中的表达量变化,并进一步对显著差异表达的miRNA进行靶基因预测。结果表明:中果皮5个不同发育时期小RNA的OD260/OD280 比值在1.7~2.0之间;浓度分别是289、364、476、213、390 ng/μL;qRT-PCR检测结果显示,12个候选miRNA在5个发育时期均显著性差异表达,特别是在中果皮发育第4个时期(G4)和第5个时期(G5)表达量极显著增高,其中miR395和miR156在第4个时期表达量最高;miR395和miR528在发育第5时期表达量最高;靶基因预测结果显示差异表达的部分miRNA,其靶基因可能参与了脂肪酸代谢通路,如磷脂酸磷酸脂酶和磷脂酶D。本研究筛选的与脂肪酸代谢相关的miRNA为今后油棕脂肪酸代谢调控通路研究提供了可能的线索。
    Abstract: We obtained high quantity small RNA from the mesocarp of oil palm (Elaeis guineensis) and screened fatty acid biosynthesis related miRNAs. The extracted method of CTAB was improved and then employed to isolate small RNA from the mesocarp of oil palm nuts at five development stages (G1-G5). Twelve miRNAs were screened from our previous database of oil palm small RNA using bioinformatics analysis. Relative expression of each miRNA was determined by stem-loop real-time quantitative PCR(qPCR) and further predicted the targets of these miRNAs. The results indicated that the OD260/OD280 values of the small RNA were between 1.7 and 2.0, and the concentrations of G1 to G5 were 289 ng/μL,364 ng/μL, 476 ng/μL, 213 ng/μL, and 390 ng/μL, respectively. Relative expression detected by qPCR showed that the twelve miRNAs exhibited significantly different expression during the five development stages, especially high expression level in the fourth stage (G4) and fifth stage (G5). Among them, miR395 and miR156 were highest in the G4 phase and miR395 and miR528 were highest in the G5 phase.Target prediction suggested that some targets of these differently expressed miRNAs were involved in the fatty acid metabolism pathway, such as phosphatidate, phosphatase and phospholipase D. In this study, high quantity small RNA was isolated by the improved CTAB method. qPCR further determined that the twelve candidate miRNAs were differently expressed during the five development stages, of which five miRNAs may be involved in the regulatory pathway of fatty acid metabolism.
  • [1] Murphy D J.Future prospects for oil palm in the 21st century: Biological and related challenges[J]. Eur J Lipid Sci Technol, 2007, 109: 296-306.
    [2] Ho C W, Wan Aida W M, Maskat M Y, Osman H. Changes in volatile compounds of palm sap (Arenga pinnata) during the heating process for production of palm sugar[J]. Food Chem, 2007, 102(4): 1156-1162.
    [3] 曹建华,林位夫,张以山,邹积鑫.油棕的产量潜力及其影响因子探析[J].中国热带农业, 2009(6): 48-50.
    [4] Naqvi A R, Sarwat M, Hasan S, Roychodhury N. Biogenesis,functions and fate of plant microRNAs[J]. J Cell Physiol, 2012, 227(9): 3163-3168.
    [5] Zhao X, Feng D, Wang Q, Abdulla A, Xie X J, Zhou J, Sun Y, Yang E S, Liu L P, Vaitheesvaran B, Bridges L, Kurland I J, Strich R, Ni J Q, Wang C, Ericsson J, Pessin J E, Ji J Y, Yang F. Regulation of lipogenesis by cyclin-dependent kinase 8-mediated control of SREBP-1[J]. J Clin Invest, 2012, 122(7): 2417-2427.
    [6] Xu L, Yuan Y J, Zhang L, Wan L, Zheng Y S, Zhou P, Li D D. Identification and characterization of differential gene expression in the mesocarp and kernel of oil palm nuts using suppression subtractive hybridization[J]. Tree Genet Genomes, 2011, 7(5): 999-1010.
    [7] Sun G. MicroRNAs and their diverse functions in plants[J].Plant Mol Biol, 2012, 80(1): 17-36.
    [8] 李东栋, 范永梅.椰子果肉组织中总RNA的提取及质量分析[J].分子植物育种, 2007, 5(6): 883-886.
    [9] Tranbarger T J, Dussert S, Joёt T, Argout X, Summo M, Champion A, Cros D, Omore A, Nouy B, Morcillo F. Regulatory mechanisms underlying oil palm fruit mesocarp maturation, ripening, and functional specialization in lipid and carotenoid metabolism[J]. Plant Physiol, 2011, 156 (2): 564-584.
    [10] Chen C F, Ridzon D A, Broomer A J, Zhou Z H, Lee D H, Nguyen J T, Barbisin M, Xu N L, Mahuvakar V R, Andersen M R, Lao K Q, Livak K J, Guegler K J. Real-time quantification of microRNAs by stem-loop RT-PCR[J]. Nucleic Acids Res, 2005, 33(20):e179. doi: 10.1093/nar/gni178.
    [11] Chen X Y, Wang J, Shen H J, Lu J, Li C X, Hu D N, Dong X D, Yan D S, Tu L L. Epigenetics, microRNAs,and carcinogenesis: functional role of microRNA-137 in uveal melanoma[J]. Invest Ophthalmol Vis Sci,2011,52(3): 1193-1199.
    [12] Abul H. J. Ullah K S, Casey G, Jay S. Purification, characterization, and bioinformatics studies of phosphatidic acid phosphohydrolase from Lagenaria siceraria[J]. ABC, 2012, 2(4): 403-410.
    [13] Wang X M. Regulatory functions of Phospholipase D and Phosphatidic acid in plant growth, development,and stress responses[J]. Plant Physiol, 2005, 139(2): 566-573.
    [14] Wang G L, Ryu S, Wang X M. Plant phospholipases: an overview[J]. Methods Mol Biol, 2012, 861: 123-137.
    [15] Wu G, Park M Y, Conway S R,Wang J W, Weigel D, Poethig R S.The sequential action of miR156 and miR172 regulates developmental ti-ming in Arabidopsis[J]. Cell, 2009, 138(4):750-759.
    [16] Xie F L, Frazier T P, Zhang B H. Identification,characterization and expression analysis of microRNAs and their targets in the potato (Solanum tuberosum)[J]. Gene, 2011, 473(1): 8-22.
    [17] Hourton-Cabassa C, Rita Matos A, Zachowski A, Moreau F. The plant uncoupling protein homologues:a new family of energy-dissipating proteins in plant mitochondria[J]. Plant Physiol Biochem, 2004, 42 (4): 283-290.
    [18] Himms-Hagen J, Harper M E. Physiological re of UCP3 may be export of fatty acids from mitochondria when fatty acid oxidation predominates: an hypothesis[J]. Exp Biol Med, 2001, 226(2): 78-84.
    [19] Li S J, Cronan J E. Putative zinc finger protein encoded by a conserved chloroplast gene is very likely a subunit of a biotin-dependent carboxylase[J]. Plant Mol Biol, 1992, 20(5): 759-761.
    [20] Yamaguchi A, Wu M F, Yang L, Wu G, Poethig R S, Wagner D. The microRNA-regulated SBP-Box transcription factor SPL3 is a direct upstream activator of LEAFY, FRUITFULL, and APETAL1[J]. Develop Cell, 2009, 17(2): 268-278.
    [21] Olsen A N, Ernst H A, Leggio L L, Skriver K. NAC transcription factors: structurally distinct, functionally diverse[J]. Trends Plant Sci, 2005, 10(2): 79-87.
    [22] Putics A, Filipowicz W, Hall J, Gorbalenya A E, Ziebuhr J. ADP-ribose-1"-monophosphatase: a conserved coronavirus enzyme that is dispensable for viral replication in tissue culture[J]. J Virol, 2005, 79(20): 12721-12731.
    [23] Becker A, Theissen G.The major clades of MADS-box genes and their role in the development and evolution of flowering plants[J]. Mol Phylogenet Evol, 2003, 29(3): 464-489.
    [24] Sun Y H, Lu S, Shi R, Chiang V L. Computational prediction of plant miRNA targets[J]. Methods Mol Biol, 2011, 744: 175-186.
    [25] Wang X M. Phospholipase D in hormonal and stress signaling[J]. Curr Opin Plant Biol, 2002, 5(5): 408-414.
计量
  • 文章访问数:  1467
  • HTML全文浏览量:  1
  • PDF下载量:  2167
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-10-23
  • 修回日期:  2013-03-14
  • 发布日期:  2013-06-29

目录

    /

    返回文章
    返回