高级检索+

低磷胁迫对雷公藤幼苗叶片生理生化特性的影响

李键, 黄锦湖, 洪滔, 吴承祯, 洪伟

李键, 黄锦湖, 洪滔, 吴承祯, 洪伟. 低磷胁迫对雷公藤幼苗叶片生理生化特性的影响[J]. 植物科学学报, 2013, 31(3): 286-296. DOI: 10.3724/SP.J.1142.2013.30286
引用本文: 李键, 黄锦湖, 洪滔, 吴承祯, 洪伟. 低磷胁迫对雷公藤幼苗叶片生理生化特性的影响[J]. 植物科学学报, 2013, 31(3): 286-296. DOI: 10.3724/SP.J.1142.2013.30286
LI Jian, HUANG Jin-Hu, HONG Tao, WU Cheng-Zhen, HONG Wei. Effects of Low Phosphorus Stress on Leaf Physiological and Biochemical Characteristics of Tripterygium wilfordii Hook. f. Seedlings[J]. Plant Science Journal, 2013, 31(3): 286-296. DOI: 10.3724/SP.J.1142.2013.30286
Citation: LI Jian, HUANG Jin-Hu, HONG Tao, WU Cheng-Zhen, HONG Wei. Effects of Low Phosphorus Stress on Leaf Physiological and Biochemical Characteristics of Tripterygium wilfordii Hook. f. Seedlings[J]. Plant Science Journal, 2013, 31(3): 286-296. DOI: 10.3724/SP.J.1142.2013.30286
李键, 黄锦湖, 洪滔, 吴承祯, 洪伟. 低磷胁迫对雷公藤幼苗叶片生理生化特性的影响[J]. 植物科学学报, 2013, 31(3): 286-296. CSTR: 32231.14.SP.J.1142.2013.30286
引用本文: 李键, 黄锦湖, 洪滔, 吴承祯, 洪伟. 低磷胁迫对雷公藤幼苗叶片生理生化特性的影响[J]. 植物科学学报, 2013, 31(3): 286-296. CSTR: 32231.14.SP.J.1142.2013.30286
LI Jian, HUANG Jin-Hu, HONG Tao, WU Cheng-Zhen, HONG Wei. Effects of Low Phosphorus Stress on Leaf Physiological and Biochemical Characteristics of Tripterygium wilfordii Hook. f. Seedlings[J]. Plant Science Journal, 2013, 31(3): 286-296. CSTR: 32231.14.SP.J.1142.2013.30286
Citation: LI Jian, HUANG Jin-Hu, HONG Tao, WU Cheng-Zhen, HONG Wei. Effects of Low Phosphorus Stress on Leaf Physiological and Biochemical Characteristics of Tripterygium wilfordii Hook. f. Seedlings[J]. Plant Science Journal, 2013, 31(3): 286-296. CSTR: 32231.14.SP.J.1142.2013.30286

低磷胁迫对雷公藤幼苗叶片生理生化特性的影响

基金项目: 国家自然科学基金项目(30901131,31070606);教育部博士学科点专项基金项目(20093515110006);福建省科技重大专项 (2006NZ0001A)资助。
详细信息
    作者简介:

    李键(1982- ),男,博士研究生,讲师,主要从事植物生理生态和海岸带森林与环境方面的研究(E-mail:hmilycau@163.com)。

    通讯作者:

    吴承祯, E-mail: fjwcz@126.com

  • 中图分类号: Q945.78

Effects of Low Phosphorus Stress on Leaf Physiological and Biochemical Characteristics of Tripterygium wilfordii Hook. f. Seedlings

  • 摘要: 为研究雷公藤的耐磷胁迫性,对雷公藤(Tripterygium wilfordii Hook. f.)一年生和三年生同一无性系扦插苗采用土培的方法进行了控制条件下的低磷胁迫实验,以KH2PO4为磷源,土壤中P2O5浓度为0、5、10、15、20、25(CK)mg/kg,低磷胁迫3 个月和6 个月后取叶片测定其丙二醛(MDA)、脯氨酸(Pro)含量以及超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)活性和酸性磷酸酶(APA)活性的变化。实验结果表明:低磷胁迫下一年生和三年生雷公藤叶片SOD、APA活性升高,MDA、Pro含量增加,并呈现随低磷胁迫加重和胁迫时间延长而上升趋势,低磷胁迫下各处理的一年生和三年生雷公藤叶片CAT、POD活性普遍低于对照,并随着低磷胁迫程度的加重而呈下降趋势。低磷胁迫下雷公藤幼苗叶片的几种保护酶活性、MDA、Pro含量以及APA活性响应都较为灵敏,保护酶系统在15、20 mg/kg处理下能够起到较好保护作用,表明雷公藤能通过自身生理调节来适应中度和轻度缺磷环境;综合各项生理指标,三年生雷公藤相对于一年生雷公藤显示了较强的抗氧化能力和渗透调节能力,具有较强的耐低磷能力,对磷较为缺乏的林地下套种雷公藤的苗龄选择有参考价值。
    Abstract: Phosphorus (P) is a very important element that controls the processes of plant life,especially during its growth phase. Low-P in the soil usually leads to adaptive changes in plants in aspects such as photosynthesis,respiration and biosynthesis,and low available P is one of the major limitations to plant production. Tripterygium wilfordii Hook. f. is an important traditional Chinese medicine,widely used in medical treatment of diabetes,rheumatism,and nephropathy. Tripterygium wilfordii is distributed in southeastern China in poor P and available P red soil. Low-P in the soil may lead to reduced T. wilfordii production. Usually,chemical fertilization and soil improvement are the primary measures used to meet the P demands of crops in traditional agriculture and trees in forestry management,but these measures still fail to increase T. wilfordii yield to meet good manufacturing practice (GAP) standards. Recently,plants with high P use efficiency have been discovered and used to replace traditional measures for improving P use efficiency of plants. Therefore,studying the effect of different P stresses on T. wilfordii will help to reveal the mechanism of low-P adaptation,and breed T. wilfordii with high-P use efficiency. Therefore,we analyzed the physiological and biochemical responses (such as peroxidase (POD),catalase (CAT),malondialdehyde (MDA),superoxide dismutase (SOD),acid phosphatase (APA),and proline (Pro)) during one growing season of one-year-old and three-year-old seedlings (T. wilfordii clones) to six P stresses under soil culture:normal P supply (25 mg/kg,CK),slight P deficiency (20 mg/kg),medium P deficiency (15 mg/kg,10 mg/kg),and heavy P deficiency (5 mg/kg,0 mg/kg). The results indicated that under low phosphorus stress,the leaves of both seedling types were higher in SOD,MDA,Pro,APA than in CK,and these values increased with concentration and time of stress. In contrast,CAT and POD values were lower than CK values in the leaves of both seedling types,and decreased with the concentration of low P stress. The protective enzymes,MDA,Pro and APA of seedling leaves were sensitive to low-P stress and worked well,especially at the treatments of 15 and 20 mg/kg. As mentioned above,T. wilfordii was adapted well in the environments of slight and medium P deficiency by self physiological regulation. The adaptability of three-year-old T. wilfordii seedlings was better than that of one-year-old seedlings in oxidation resistance,osmoregulation and low-P tolerance. Consequently,the three-year-old seedlings were preferred for interplantation in low P conditions. The APA levels can serve as a reference to the breeding of T. wilfordii with low P tolerance,but more research is needed to determine whether APA levels are an important index for evaluating and selecting T. wilfordii clones with high P use efficiency.
  • [1] Epsein E.Mineral Nutrition of Plants[M].New York:J Wiley and Sons,Inc,1972:51-56.
    [2] Giannopolitis C N.Ries S K.Superoxide dismutases Ⅱ.Purification and quantitative relationship with water-soluble protein in seedlings[J].Plant Physiol,1977,59(2):315-318.
    [3] 万美亮,邝炎化,陈建勋.缺磷胁迫对甘蔗过氧化及保护酶系统活性的影响[J].华南农业大学学报,1999,20(2):131-135.
    [4] 周志春,谢钰容,金国庆,吴吉富,陈跃.马尾松种源对磷肥的遗传反应及根际土壤营养差异[J].林业科学,2003,39(6):62-67.
    [5] Grierson P F.Organic acids in the rhizosphere of Banksia interifolia L.F.[J].Plant Soil,1992,44(2):259-265.
    [6] Ran I M,Freeden A L,Terry N.Influence of phosphorus limitation on photosynthesis,carbon allocation and partitioning in sugar beet soybean grown with a short photoperiod[J].Plant Physiol Biochem,1993,31(2):223-231.
    [7] Mitsukawa N,Okumura S,Shirano Y,Sato S,Kato T,Harashima S,Shibata D.Overexpression of an Arabidopsis thaliana high-affinity phosphate transporter gene in tobacco cultured cells enhances cell growth under phosphate limited conditions[J].Proc Natl Acad Sci USA,1997,94(13):7098-7102.
    [8] Whitehead S J,Caporn S J M,Press M C.Effects of elevated CO2,nitrogen and phosphorus on the growth and photosynthesis of two upland perennials:Calluna vulgaris and Pteridium aquilinum[J].New Phytol,1997,135(2):201-211.
    [9] Smith F W,Ealing P M,Dong B,Delhaize E.The cloning of two Arabidopsis genes belonging to a phosphate[J].Transporter Family Plant J,1997,11(1):83-92.
    [10] Gilbert G A,Knight D,Vance C P.Proteoid root development of phosphorus deficient lupin is mimicked by auxin and phosphonate[J].Ann Bot,2000,85(6):921-928.
    [11] Neumann G,Massonneau A,Langlade N,Dinkelaker B,Hengeler C,Romheld V,Martinoia E.Physiological aspects of cluster root function and development in phosphorus——deficient white lupin(Lupinus albus L.)[J].Ann Bot,2000,85(6):909-919.
    [12] Baldwin J C,Katlhikeyan A S,Raghotharoa K G.LEPS2,a phosphorus starvation induced novel acid phosphatase from tomato[J].Plant Physiol,2001,125(2):728-737.
    [13] 陈隆升,陈永忠,彭邵锋,马力,王瑞,王湘南.油茶对低磷胁迫的生理生化效应研究[J].林业科学研究,2010,23(5):782-786.
    [14] 王晶,韩晓日,战秀梅,侯玉慧,赵伟力.低磷胁迫对番茄叶片膜脂过氧化及保护酶活性的影响[J].植物营养与肥料学报,2005,11(6):851-854.
    [15] 韩胜芳,邓若磊,徐海荣,曹云飞,王笑颖,肖凯.缺磷条件下不同磷效率水稻品种光合特性和细胞保护酶活性[J].应用生态学报,2007,18(11):2462-2467.
    [16] 李兆佳,喻杰,樊大勇,谢宗强,熊高明,张想英.克隆整合提高淹水胁迫下狗牙根根部的活性氧清除能力[J].生态学报,2011,31(17):4992-4999.
    [17] 钱永强,孙振元,韩蕾,巨关升,刘俊祥,曹丽.野牛草叶片活性氧及其清除系统对水分胁迫的响应[J].生态学报,2010,30(7):1920-1926.
    [18] 冯佰利,高小丽,王长发,张嵩午,李生秀.干旱条件下不同温型小麦叶片衰老与活性氧代谢特性的研究[J].中国生态农业学报,2005,13(4):74-76.
    [19] 樊怀福,郭世荣,焦彦生,张润花,李娟.外源一氧化氮对NaCl胁迫下黄瓜幼苗生长、活性氧代谢和光合特性的影响[J].生态学报,2007,27(2):546-553.
    [20] 王鑫,郭平毅,原向阳,姚满生.2,4-D丁酯对罂粟(Papaver somniferum L.)保护酶活性及脂质过氧化作用的影响[J].生态学报,2008,28(3):1098-1103.
    [21] 曹光球,杨梅,林思祖,黄燕华.邻羟基苯甲酸对不同化感型杉木无性系抗氧化酶活性的化感效应[J].中国生态农业学报,2010,18(6):1267-1271.
    [22] 丁国昌,林思祖,王爱萍,曹光球.邻羟基苯甲酸对干旱胁迫下杉木幼苗保护酶的影响[J].中国生态农业学报,2008,16(5):1183-1187.
    [23] Foyer C H,Noctor G.Oxygen processing in photosynthesis:Regulation and signaling[J].New Phytol,2000,146(3):359-388.
    [24] Amalo K,Chen G X,Asade K.Separate assays specific for ascorbate peroxidase and guaiacol peroxidase and for the chloroplastic and cytosolic isozymes of ascorbate peroxidase implants[J].Plant Cell Physiol,1994,35(3):497-504.
    [25] Salin M L.Toxic oxygen species and protective system of the chloroplast[J].Physiol Plant,1987,72(3):681-689.
    [26] Shah K,Kumar R G,Verma S,Dubey R S.Effect of cadmium on lipid peroxidation,superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings[J].Plant Sci,2001,161(6):1135-1144.
    [27] Mittler R,Vanderauwera S,Gollery M,Van Breusegem F.Reactive oxygen gene network of plants[J].Trends Plant Sci,2004,9(10):490-498.
    [28] 洪伟,李键,吴承祯,洪滔,范海兰,唐佳栋,陈灿.雷公藤栽培及利用研究综述[J].福建林学院学报,2007,27(1):92-96.
    [29] 徐向华,丁贵杰.马尾松适应低磷胁迫的生理生化响应[J].林业科学,2006,42(9):24-28.
    [30] 何方,何柏.油茶栽培分布与立地分类的研究[J].林业科学,2002,38(5):64-73.
    [31] 章家恩.生态学常用实验研究方法与技术[M].北京:化学工业出版社,2007:40-60.
    [32] 赵世杰,许长成,邹琦,孟庆伟.植物组织中丙二醛测定方法的改进[J].植物生理学通讯,1994,30(3):207-210.
    [33] 林启美,黄德明.应用酸性磷酸酶进行番茄磷素诊断[J].华北农学报,1991,6(2):78-93.
    [34] Li M,Shinano T,Tadano T.Distribution of exudates of lupin roots in the rhizosphere under phosphorus deficient conditions[J].Soil Sci Plant Nutr,1997,43(1):237-245.
    [35] Diem H G,Duhoux E,Zaid H,Arahou M.Cluster roots in Casuarinaceae:Role and relationship to soil nutrient factors[J].Ann Bot,2000,85(6):929-936.
    [36] Liu Y,Mi G H,Chen F J,Zhang J H,Zhang F S.Rhizosphere effect and root growth of two maize(Zea mays L.) genotypes with contrasting Pefficiency at low P availability[J].Plant Sci,2004,167(2):217-223.
    [37] Chen Y F,Li L Q,Xu Q,Kong Y H,Wang H,Wei H W.The WRKY6 transcription factor modulates PHOSPHATE1 expression in response to low Pi stress in Arabidopsis[J].Plant Cell,2009,21(11):3554-3566.
    [38] 王忠. 植物生理学[M].北京:中国农业出版社,2000:422-439.
    [39] Jiang M Y,Zhang J H.Water stress induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up regulates the activities of antioxidant enzymes in maize leaves[J].J of Exp Bot,2002,53(379):2401-2410.
    [40] 蒋明义,荆家海,王韶唐.渗透胁迫对水稻膜脂过氧化及体内保护酶系统的影响[J].植物生理学报,1991,17(1):80-84.
    [41] 刘雪超,齐红岩,陈岩,华利静.AgNO3对网纹甜瓜试管苗糖代谢及抗氧化酶活性的影响[J].植物生理学报,2011,47(3):286-292.
    [42] 李志玉,郭庆元,伍晓明,王汉中,廖星,涂学文.油菜不同类型品种磷效率特性研究[J].中国油料作物学报,2001,21(4):57-61.
    [43] 张瑞敏,王三根,黄爱缨,杨观友.施磷水平对不同基因型玉米生理特性及膜保护酶的比较研究[J].西南大学学报:自然科学版,2008,30(6):60-63.
    [44] Demiral T,Türkan I.Comparative lipid peroxidation,antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance[J].Environ Exp Bot,2005,53(3):247-257.
    [45] Vincent J B,Crowder M W,Averill B A.Hydrolysis of phosphate monoesters:a biological problem with multiple chemical solutions[J].Trends Biochem Sci,1992,17(3):105-110.
    [46] Helal H M Varietal difference in roots phosphatase activity as related to the utilization of organic phosphates[J].Plant and Soil,1990,123(2):161-163.
    [47] 李红,邝炎化,彭新湘.缺磷胁迫对甘蔗悬浮细胞磷素吸收特性和相关酶活性的影响[J].植物生理学通讯,2004,40(4):427-430.
    [48] Nanamori M,Shinano T,Wasaki J.Low phosphorus tolerance mechanisms:phosphorus recycling and photosynthate partitioning in the tropical forage grass,Brachiaria hybrid cultivar mulato compared with rice[J].Plant Cell Physiol,2004,45(4):460-469.
    [49] 张海伟,黄宇,叶祥盛,徐芳森.低磷胁迫下甘蓝型油菜酸性磷酸酶对磷效率的贡献分析[J].中国科学:生命科学,2010,40(5):418-427.
计量
  • 文章访问数:  1393
  • HTML全文浏览量:  1
  • PDF下载量:  1593
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-08-30
  • 修回日期:  2012-12-19
  • 发布日期:  2013-06-29

目录

    /

    返回文章
    返回