Citation: | Zhang YX,Duan YM,Zhou YT,Gong YB. Comparison of quantitative research methods for flower scent based on dynamic headspace collection[J]. Plant Science Journal,2025,43(1):122−133. DOI: 10.11913/PSJ.2095-0837.24095 |
Floral scents play a critical role in mediating plant-pollinator interactions and hold significant commercial value in the perfume industry. To analyze these scents, researchers have developed various collection methods, with dynamic headspace collection-using continuous airflow to capture volatile compounds onto sorbent traps—being the most commonly used. However, the lack of standardized experimental protocols poses challenges in achieving consistent and reliable results. This study systematically evaluated the performance of three sorbent traps (charcoal, Tenax TA, and Propak Q), two elution solvents (hexane and dichloromethane), and three connection methods (push-pull, circulation, and closed-loop) through controlled indoor and outdoor experiments using a standard mixture of floral scent components and Abelia×grandiflora (André) Rehder. Results showed that Propak Q outperformed the other sorbent traps, while charcoal and Tenax TA exhibited relatively poor adsorption capabilities for benzenes and aliphatic compounds, respectively. The effects of the two elution solvents were similar. Among the three connection methods, the push-pull approach delivered the most consistent results, effectively preserving the natural freshness of floral scents. Based on these findings, the study recommends the use of Propak Q as the preferred sorbent trap and the push-pull method for floral scent experiments, particularly in cases where the composition of volatile compounds is unknown or when community-level analyses are required.
[1] |
Tholl D,Boland W,Hansel A,Loreto F,Röse USR,Schnitzler JP. Practical approaches to plant volatile analysis[J]. Plant J,2006,45(4):540−560. doi: 10.1111/j.1365-313X.2005.02612.x
|
[2] |
Pichersky E,Gershenzon J. The formation and function of plant volatiles:perfumes for pollinator attraction and defense[J]. Curr Opin Plant Biol,2002,5(3):237−243. doi: 10.1016/S1369-5266(02)00251-0
|
[3] |
Raguso RA. Wake up and smell the roses:the ecology and evolution of floral scent[J]. Annu Rev Ecol Evol Syst,2008,39:549−569. doi: 10.1146/annurev.ecolsys.38.091206.095601
|
[4] |
Schiestl FP. Ecology and evolution of floral volatile-mediated information transfer in plants[J]. New Phytol,2015,206(2):571−577. doi: 10.1111/nph.13243
|
[5] |
Rosenstiel TN,Shortlidge EE,Melnychenko AN,Pankow JF,Eppley SM. Sex-specific volatile compounds influence microarthropod-mediated fertilization of moss[J]. Nature,2012,489(7416):431−433. doi: 10.1038/nature11330
|
[6] |
Cardé RT,Willis MA. Navigational strategies used by insects to find distant,wind-borne sources of odor[J]. J Chem Ecol,2008,34(7):854−866. doi: 10.1007/s10886-008-9484-5
|
[7] |
Menzel R. Memory dynamics in the honeybee[J]. J Comp Physiol A,1999,185(4):323−340. doi: 10.1007/s003590050392
|
[8] |
Kantsa A,Raguso RA,Dyer AG,Sgardelis SP,Olesen JM,Petanidou T. Community-wide integration of floral colour and scent in a Mediterranean scrubland[J]. Nat Ecol Evol,2017,1(10):1502−1510. doi: 10.1038/s41559-017-0298-0
|
[9] |
Kantsa A,Raguso RA,Lekkas T,Kalantzi OI,Petanidou T. Floral volatiles and visitors:a meta-network of associations in a natural community[J]. J Ecol,2019,107(6):2574−2586. doi: 10.1111/1365-2745.13197
|
[10] |
Larue AAC,Raguso RA,Junker RR. Experimental manipulation of floral scent bouquets restructures flower-visitor interactions in the field[J]. J Anim Ecol,2016,85(2):396−408. doi: 10.1111/1365-2656.12441
|
[11] |
Bergström G,Appelgren M,Borg-Karlson AK,Groth I,Strömberg S,Strömberg S. Studies on natural odoriferous compounds. XXⅡ. Techniques for the isolation/enrichment of plant volatiles in the analyses of Ophrys orchids (Orchidaceae)[J]. Chem Scr,1980,16(5):173−180.
|
[12] |
Ray HA,Stuhl CJ,Gillett-Kaufman JL. Rapid collection of floral fragrance volatiles using a headspace volatile collection technique for GC-MS thermal desorption sampling[J]. J Vis Exp,2019(154):e58928.
|
[13] |
Belliardo F,Bicchi C,Cordero C,Liberto E,Rubiolo P,Sgorbini B. Headspace-solid-phase microextraction in the analysis of the volatile fraction of aromatic and medicinal plants[J]. J Chromatogr Sci,2006,44(7):416−429. doi: 10.1093/chromsci/44.7.416
|
[14] |
Raguso RA,Pellmyr O. Dynamic headspace analysis of floral volatiles:a comparison of methods[J]. Oikos,1998,81(2):238−254. doi: 10.2307/3547045
|
[15] |
Raguso RA,Levin RA,Foose SE,Holmberg MW,McDade LA. Fragrance chemistry,nocturnal rhythms and pollination "syndromes" in Nicotiana[J]. Phytochemistry,2003,63(3):265−284. doi: 10.1016/S0031-9422(03)00113-4
|
[16] |
Wei JN,Zhu JW,Kang L. Volatiles released from bean plants in response to agromyzid flies[J]. Planta,2006,224(2):279−287. doi: 10.1007/s00425-005-0212-x
|
[17] |
Horiuchi JI,Badri DV,Kimball BA,Negre F,Dudareva N,et al. The floral volatile,methyl benzoate,from snapdragon (Antirrhinum majus) triggers phytotoxic effects in Arabidopsis thaliana[J]. Planta,2007,226(1):1−10. doi: 10.1007/s00425-006-0464-0
|
[18] |
Dudareva N,Andersson S,Orlova I,Gatto N,Reichelt M,et al. The nonmevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers[J]. Proc Natl Acad Sci USA,2005,102(3):933−938. doi: 10.1073/pnas.0407360102
|
[19] |
Wang H,Zhou WL,Li Z,Niklas KJ,Sun SC. Plant volatiles mediate evolutionary interactions between plants and tephritid flies and are evolutionarily more labile than non-volatile defenses[J]. J Anim Ecol,2021,90(4):846−858. doi: 10.1111/1365-2656.13414
|
[20] |
Zhang WB,Jiang YF,Chen SM,Chen FD,Chen F. Concentration-dependent emission of floral scent terpenoids from diverse cultivars of Chrysanthemum morifolium and their wild relatives[J]. Plant Sci,2021,309:110959. doi: 10.1016/j.plantsci.2021.110959
|
[21] |
Haynes KF,Zhao JZ,Latif A. Identification of floral compounds from Abelia grandiflora that stimulate upwind flight in cabbage looper moths[J]. J Chem Ecol,1991,17(3):637−646. doi: 10.1007/BF00982132
|
[22] |
Chamberlain K,Khan ZR,Pickett JA,Toshova T,Wadhams LJ. Diel periodicity in the production of green leaf volatiles by wild and cultivated host plants of stemborer moths,Chilo partellus and Busseola fusca[J]. J Chem Ecol,2006,32(3):565−577. doi: 10.1007/s10886-005-9016-5
|
[23] |
Friberg M,Schwind C,Raguso RA,Thompson JN. Extreme divergence in floral scent among woodland star species (Lithophragma spp.) pollinated by floral parasites[J]. Ann Bot,2013,111(4):539−550. doi: 10.1093/aob/mct007
|
[24] |
Zu PJ,Blanckenhorn WU,Schiestl FP. Heritability of floral volatiles and pleiotropic responses to artificial selection in Brassica rapa[J]. New Phytol,2016,209(3):1208−1219. doi: 10.1111/nph.13652
|
[25] |
Saunier A,Blande JD. The effect of elevated ozone on floral chemistry of Brassicaceae species[J]. Environ Pollut,2019,255:113257. doi: 10.1016/j.envpol.2019.113257
|
[26] |
Donath J,Boland W. Biosynthesis of acyclic homoterpenes:enzyme selectivity and absolute configuration of the nerolidol precursor[J]. Phytochemistry,1995,39(4):785−790. doi: 10.1016/0031-9422(95)00082-I
|
[27] |
Koch T,Krumm T,Jung V,Engelberth J,Boland W. Differential induction of plant volatile biosynthesis in the lima bean by early and late intermediates of the octadecanoid-signaling pathway[J]. Plant Physiol,1999,121(1):153−162. doi: 10.1104/pp.121.1.153
|
[28] |
Collignon RM,Swift IP,Zou YF,McElfresh JS,Hanks LM,Millar JG. The influence of host plant volatiles on the attraction of longhorn beetles to pheromones[J]. J Chem Ecol,2016,42(3):215−229. doi: 10.1007/s10886-016-0679-x
|
[29] |
Tholl D,Chen F,Petri J,Gershenzon J,Pichersky E. Two sesquiterpene synthases are responsible for the complex mixture of sesquiterpenes emitted from Arabidopsis flowers[J]. Plant J,2005,42(5):757−771. doi: 10.1111/j.1365-313X.2005.02417.x
|
[30] |
李海东,高岩,金幼菊. 珍珠梅花挥发性物质日动态变化的研究[J]. 内蒙古农业大学学报,2004,25(2):54−59.
Li HD,Gao Y,Jin YJ. The daily dymamic variances of the vocs releasing from flower of Siberia kirilowii (regel) maxim[J]. Journal of Inner Mongolia Agricultural University,2004,25(2):54−59.
|
[31] |
高群英,高岩,张汝民,杜明利,李刚. 3种菊科植物香气成分的热脱附气质联用分析[J]. 浙江农林大学学报,2011,28(2):326−332.
Gao QY,Gao Y,Zhang RM,Du ML,Li G. Aromatic composition in three plant species using TDS-GC/MS[J]. Journal of Zhejiang A& F University,2011,28(2):326−332.
|
[32] |
蔡宙霏,陈雅奇,许馨露,王小东,汪俊宇,等. 4个桂花品种开花进程释放VOCs动态变化分析[J]. 浙江农林大学学报,2017,34(4):608−619.
Cai ZF,Chen YQ,Xu XL,Wang XD,Wang JY,et al. Changes of volatile organic compounds released during flowering in four Osmanthus fragrans cultivar groups[J]. Journal of Zhejiang A&F University,2017,34(4):608−619.
|
[33] |
韦赛君,张静,王翔,吕嘉欣,王彬,等. 金钱松林挥发物季节性变化对空气负离子及微生物的影响[J]. 江西农业大学学报,2021,43(6):1316−1326.
Wei SJ,Zhang J,Wang X,Lü JX,Wang B,et al. Effects of seasonal variation of volatiles in Pseudolarix amabilis forest on air anion and microorganism[J]. Acta Agriculturae Universitatis Jiangxiensis,2021,43(6):1316−1326.
|
[1] | Qin Ai, Zheng Xiao-Min, Wang Kun. Research methods of plant proteomics based on mass spectrometry[J]. Plant Science Journal, 2018, 36(3): 470-478. DOI: 10.11913/PSJ.2095-0837.2018.30470 |
[2] | Cao Rui, Chen Hao, Ding Yi. Comparison of protein extraction methods and two-dimensional electrophoresis analysis in sacred lotus seeds[J]. Plant Science Journal, 2018, 36(1): 127-135. DOI: 10.11913/PSJ.2095-0837.2018.10127 |
[3] | Liu Yuan, Lü Jia, Song Jia, Wang Yu-Yao, Wang Xiao-Jing, Du Fang. Plant species delimitation method based on geometric morphometrics[J]. Plant Science Journal, 2017, 35(6): 894-899. DOI: 10.11913/PSJ.2095-0837.2017.60894 |
[4] | BAI Xin-Fu, ZHU Jian-Jun. Techniques and Methods for the Practical Use of Xylem Pressure Probes[J]. Plant Science Journal, 2013, 31(6): 603-608. DOI: 10.3724/SP.J.1142.2013.60603 |
[5] | SUN Ying-Bao, FU De-Zhi, MA Lv-Yi, WANG Ying-Wei. Characteristics and Using Methods of the Pen in Botanical Scientific Illustration[J]. Plant Science Journal, 2009, 27(6): 692-694. |
[6] | YANG Jie, CHEN Wen-Hong, SHUI Yu-Min, SHENG Jia-Shu. Investigating Methods of Epiphytes in Forest Canopy[J]. Plant Science Journal, 2008, 26(6): 661-667. |
[7] | TAO Yue-Hong, ZHANG Zhao, ZHANG Ben-Gang, SI Jian-Yong. Discussion of Research Methods for Fat-soluble Allelochemicals[J]. Plant Science Journal, 2008, 26(5): 542-546. |
[8] | TANG Hua, XIANG Fu-Ying, LIU Xiao-Lei, SHUAI Ai-Hua. A Review of Research Methods on Plant Aluminum Stress[J]. Plant Science Journal, 2007, 25(5): 494-499. |
[9] | WANG Chuan-Hua, WANG Yi-Min, BAO Zhao-Xia, LI Zuo-Zhou. An Optimized Isolation and Purification Method for Armillaria mellea Complexes[J]. Plant Science Journal, 2005, 23(5): 478-481. |
[10] | Yang Ji. INFRASPECIFIC VARIATION IN PLANT AND THE EXPLORING METHODS[J]. Plant Science Journal, 1991, 9(2): 185-195. |