Citation: | Luo SS,Zhang ZQ,Nong BX,Xia XZ,Liang SH,Liao ZY,Zeng Y,Feng R,Chen C,Guo H,Liang YT,Qiu YF,Li DT,Yang XH. Overexpression of OsTTG1 affects the epidermal trichome, anthocyanins, and flowering stage in Arabidopsis thaliana (L.) Heynh.[J]. Plant Science Journal,2025,43(1):82−91. DOI: 10.11913/PSJ.2095-0837.24071 |
The OsTTG1 gene encodes a WD40 domain repeat protein, with its knockout in Oryza sativa L. known to affect anthocyanin accumulation. However, whether this gene affects other traits remains unclear. In this study, OsTTG1 was overexpressed in the Arabidopsis thaliana (L.) Heynh. ttg1 mutant. Results showed that overexpression of OsTTG1 (OsTTG1-OE) restored anthocyanin accumulation in leaves and stalks, produced dark brown seeds, and promoted epidermal hair development on leaves, stalks, and calyces. In contrast, the ttg1 mutant exhibited flowering 3–5 d earlier than both the Col-0 and OsTTG1-OE strains, while no significant differences in flowering time were observed between Col-0 and OsTTG1-OE. RNA-seq analysis of differentially expressed genes (DEGs) between OsTTG1-OE and ttg1 at various developmental stages revealed key gene clusters potentially associated with anthocyanin synthesis (MKK9, CYP75B1, TT8, GSTF12, DFR, F3H, CHS, and LDOX), epidermal hair formation (SPL15, TCL1, ETC2, SPL4, SPL13A, ETC3, and GIS), and flowering regulation (FLC, FT, AGL19, HDA5, and LHY). These findings provide an important theoretical basis and reference for understanding the function of OsTTG1 in O. sativa.
[1] |
Airoldi CA,Hearn TJ,Brockington SF,Webb AAR,Glover BJ. TTG1 proteins regulate circadian activity as well as epidermal cell fate and pigmentation[J]. Nat Plants,2019,5(11):1145−1153. doi: 10.1038/s41477-019-0544-3
|
[2] |
Broun P. Transcriptional control of flavonoid biosynthesis:a complex network of conserved regulators involved in multiple aspects of differentiation in Arabidopsis[J]. Curr Opin Plant Biol,2005,8(3):272−279. doi: 10.1016/j.pbi.2005.03.006
|
[3] |
Tominaga-Wada R,Ishida T,Wada T. New insights into the mechanism of development of Arabidopsis root hairs and trichomes[J]. Int Rev Cell Mol Biol,2011,286:67−106.
|
[4] |
Oppenheimer DG,Herman PL,Sivakumaran S,Esch J,Marks MD. A myb gene required for leaf trichome differentiation in Arabidopsis is expressed in stipules[J]. Cell,1991,67(3):483−493. doi: 10.1016/0092-8674(91)90523-2
|
[5] |
Paffendorf BAM,Qassrawi R,Meys AM,Trimborn L,Schrader A. TRANSPARENT TESTA GLABRA 1 participates in flowering time regulation in Arabidopsis thaliana[J]. PeerJ,2020,8:e8303. doi: 10.7717/peerj.8303
|
[6] |
Wang JY,Zhang CH,Li YS. Genome-wide identification and expression profiles of 13 key structural gene families involved in the biosynthesis of rice flavonoid scaffolds[J]. Genes,2022,13(3):410. doi: 10.3390/genes13030410
|
[7] |
Yang XH,Wang JR,Xia XZ,Zhang ZQ,He J, et al. OsTTG1,a WD40 repeat gene,regulates anthocyanin biosynthesis in rice[J]. Plant J,2021,107(1):198−214.
|
[8] |
Du SL,Wang ZW,Chen Y,Tan Y,Li X,et al. Coleoptile purple line regulated by A-P gene system is a valuable marker trait for seed purity identification in hybrid rice[J]. Rice Sci,2022,29(5):451−461. doi: 10.1016/j.rsci.2022.07.005
|
[9] |
Miller R,Owens SJ,Rørslett B. Plants and colour:flowers and pollination[J]. Opt Laser Technol,2011,43(2):282−294. doi: 10.1016/j.optlastec.2008.12.018
|
[10] |
Dixon RA,Achnine L,Kota P,Liu CJ,Reddy MSS,Wang LJ. The phenylpropanoid pathway and plant defence: a genomics perspective[J]. Mol Plant Pathol,2002,3(5):371−390. doi: 10.1046/j.1364-3703.2002.00131.x
|
[11] |
Koornneef M. The complex syndrome of ttg mutanis[J]. Arabidopsis Inf Serv,1981,18:45−51.
|
[12] |
Gonzalez A,Zhao MZ,Leavitt JM,Lloyd AM. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/MYB transcriptional complex in Arabidopsis seedlings[J]. Plant J,2008,53(5):814−827. doi: 10.1111/j.1365-313X.2007.03373.x
|
[13] |
Petroni K,Tonelli C. Recent advances on the regulation of anthocyanin synthesis in reproductive organs[J]. Plant Sci,2011,181(3):219−229. doi: 10.1016/j.plantsci.2011.05.009
|
[14] |
Zhang BP,Schrader A. TRANSPARENT TESTA GLABRA 1-dependent regulation of flavonoid biosynthesis[J]. Plants (Basel),2017,6(4):65. doi: 10.3390/plants6040065
|
[15] |
Wei ZL,Cheng YL,Zhou CC,Li D,Gao X,et al. Genome-wide identification of direct targets of the TTG1-bHLH-MYB complex in regulating trichome formation and flavonoid accumulation in Arabidopsis thaliana[J]. Int J Mol Sci,2019,20(20):5014. doi: 10.3390/ijms20205014
|
[16] |
Xu WJ,Grain D,Bobet S,Le Gourrierec J,Thévenin J,et al. Complexity and robustness of the flavonoid transcriptional regulatory network revealed by comprehensive analyses of MYB-bHLH-WDR complexes and their targets in Arabidopsis seed[J]. New Phytol,2014,202(1):132−144. doi: 10.1111/nph.12620
|
[17] |
Baudry A,Heim MA,Dubreucq B,Caboche M,Weisshaar B,Lepiniec L. TT2,TT8,and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana[J]. Plant J,2004,39(3):366−380. doi: 10.1111/j.1365-313X.2004.02138.x
|
[18] |
柳蕾,孙健,吴殿星,舒小丽. 水稻光叶性状及表皮毛发育研究进展[J]. 核农学报,2015,29(11):2110−2116. doi: 10.11869/j.issn.100-8551.2015.11.2110
Liu L,Sun J,Wu DX,Shu XL. Advances in studying on glabrous rice and the development of trichomes[J]. Journal of Nuclear Agricultural Sciences,2015,29(11):2110−2116. doi: 10.11869/j.issn.100-8551.2015.11.2110
|
[19] |
Kirik V,Lee MM,Wester K,Herrmann U,Zheng ZG,et al. Functional diversification of MYB23 and GL1 genes in trichome morphogenesis and initiation[J]. Development,2005,132(7):1477−1485. doi: 10.1242/dev.01708
|
[20] |
Zhang F,Gonzalez A,Zhao MZ,Payne CT,Lloyd A. A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis[J]. Development,2003,130(20):4859−4869. doi: 10.1242/dev.00681
|
[21] |
Payne CT,Zhang F,Lloyd AM. GL3 encodes a bHLH protein that regulates trichome development in Arabidopsis through interaction with GL1 and TTG1[J]. Genetics,2000,156(3):1349−1362. doi: 10.1093/genetics/156.3.1349
|
[22] |
An LJ,Zhou ZJ,Su S,Yan A,Gan YB. GLABROUS INFLORESCENCE STEMS (GIS) is required for trichome branching through gibberellic acid signaling in Arabidopsis[J]. Plant Cell Physiol,2012,53(2):457−469. doi: 10.1093/pcp/pcr192
|
[23] |
Gan YB,Liu C,Yu H,Broun P. Integration of cytokinin and gibberellin signalling by Arabidopsis transcription factors GIS,ZFP8 and GIS2 in the regulation of epidermal cell fate[J]. Development,2007,134(11):2073−2081. doi: 10.1242/dev.005017
|
[24] |
Zhou ZJ,An LJ,Sun LL,Gan YB. ZFP5 encodes a functionally equivalent GIS protein to control trichome initiation[J]. Plant Signal Behav,2012,7(1):28−30. doi: 10.4161/psb.7.1.18404
|
[25] |
刘艳霞,王娟,兰海燕. 基因调控网络调节植物表皮毛发育的研究进展[J]. 分子植物育种,2017,15(4):1362−1370.
Liu YX,Wang J,Lan HY. Advance in gene regulatory network of plant trichome development controlling[J]. Molecular Plant Breeding,2017,15(4):1362−1370.
|
[26] |
Masucci JD,Rerie WG,Foreman DR,Zhang M,Galway ME,et al. The homeobox gene GLABRA 2 is required for position-dependent cell differentiation in the root epidermis of Arabidopsis thaliana[J]. Development,1996,122(4):1253−1260. doi: 10.1242/dev.122.4.1253
|
[27] |
Ioannidi E,Rigas S,Tsitsekian D,Daras G,Alatzas A,et al. Trichome patterning control involves TTG1 interaction with SPL transcription factors[J]. Plant Mol Biol,2016,92(6):675−687. doi: 10.1007/s11103-016-0538-8
|
[28] |
Helliwell CA,Wood CC,Robertson M,James Peacock W,Dennis ES. The Arabidopsis FLC protein interacts directly in vivo with SOC1 and FT chromatin and is part of a high-molecular-weight protein complex[J]. Plant J,2006,46(2):183−192. doi: 10.1111/j.1365-313X.2006.02686.x
|
[29] |
Zheng R,Meng XB,Hu QL,Yang B,Cui GC,et al. OsFTL12,a member of FT-like family,modulates the heading date and plant architecture by florigen repression complex in rice[J]. Plant Biotechnol J,2023,21(7):1343−1360. doi: 10.1111/pbi.14020
|
[30] |
Western TL,Young DS,Dean GH,Tan WL,Samuels AL,Haughn GW. MUCILAGE-MODIFIED4 encodes a putative pectin biosynthetic enzyme developmentally regulated by APETALA2,TRANSPARENT TESTA GLABRA1,and GLABRA2 in the Arabidopsis seed coat[J]. Plant Physiol,2004,134(1):296−306. doi: 10.1104/pp.103.035519
|
[31] |
Shi L,Katavic V,Yu YY,Kunst L,Haughn G. Arabidopsis glabra2 mutant seeds deficient in mucilage biosynthesis produce more oil[J]. Plant J,2012,69(1):37−46. doi: 10.1111/j.1365-313X.2011.04768.x
|
[32] |
Qiu YP,Tao R,Feng Y,Xiao ZN,Zhang D,et al. EIN3 and RSL4 interfere with an MYB-bHLH-WD40 complex to mediate ethylene-induced ectopic root hair formation in Arabidopsis[J]. Proc Natl Acad Sci USA,2021,118(51):e2110004118. doi: 10.1073/pnas.2110004118
|
[33] |
Tian HN,Wang XL,Guo HY,Cheng YX,Hou CJ,et al. NTL8 regulates trichome formation in Arabidopsis by directly activating R3 MYB genes TRY and TCL1[J]. Plant Physiol,2017,174(4):2363−2375. doi: 10.1104/pp.17.00510
|
[34] |
Zhang XR,Henriques R,Lin SS,Niu QW,Chua NH. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method[J]. Nat Protoc,2006,1(2):641−646. doi: 10.1038/nprot.2006.97
|
[35] |
Koes R,Verweij W,Quattrocchio F. Flavonoids:a colorful model for the regulation and evolution of biochemical pathways[J]. Trends Plant Sci,2005,10(5):236−242. doi: 10.1016/j.tplants.2005.03.002
|
[36] |
贾赵东,马佩勇,边小峰,杨清,郭小丁,谢一芝. 植物花青素合成代谢途径及其分子调控[J]. 西北植物学报,2014,34(7):1496−1506. doi: 10.7606/j.issn.1000-4025.2014.07.1496
Jia ZD,Ma PY,Bian XF,Yang Q,Guo XD,Xie YZ. Biosynthesis metabolic pathway and molecular regulation of plants anthocyanin[J]. Acta Botanica Boreali-Occidentalia Sinica,2014,34(7):1496−1506. doi: 10.7606/j.issn.1000-4025.2014.07.1496
|
[37] |
马旭. miR159-MYB65-DFR参与番茄花青素合成调控分析[D]. 哈尔滨:东北林业大学,2023:12−15.
|
[38] |
Baudry A,Caboche M,Lepiniec L. TT8 controls its own expression in a feedback regulation involving TTG1 and homologous MYB and bHLH factors,allowing a strong and cell-specific accumulation of flavonoids in Arabidopsis thaliana[J]. Plant J,2006,46(5):768−779. doi: 10.1111/j.1365-313X.2006.02733.x
|
[39] |
曹敏,张璐,高新梅,张艮邦,李文强,郭万里. 植物表皮毛发育分子调控机制的研究进展[J]. 安徽农业科学,2013,41(10):4231−4235. doi: 10.3969/j.issn.0517-6611.2013.10.001
Cao M,Zhang L,Gao XM,Zhang GB,Li WQ,Guo WL. Research progress of molecular regulation mechanism in the development of plant trichomes[J]. Journal of Anhui Agricultural Sciences,2013,41(10):4231−4235. doi: 10.3969/j.issn.0517-6611.2013.10.001
|
[40] |
Takahashi Y,Teshima KM,Yokoi S,Innan H,Shimamoto K. Variations in Hd1 Proteins,Hd3a promoters,and Ehd1 expression levels contribute to diversity of flowering time in cultivated rice[J]. Proc Natl Acad Sci USA,2009,106(11):4555−4560. doi: 10.1073/pnas.0812092106
|
[41] |
Krogan NT,Hogan K,Long JA. APETALA2 negatively regulates multiple floral organ identity genes in Arabidopsis by recruiting the co-repressor TOPLESS and the histone deacetylase HDA19[J]. Development,2012,139(22):4180−4190. doi: 10.1242/dev.085407
|
[42] |
Luo M,Tai R,Yu CW,Yang SG,Chen CY,et al. Regulation of flowering time by the histone deacetylase HDA5 in Arabidopsis[J]. Plant J,2015,82(6):925−936. doi: 10.1111/tpj.12868
|
[43] |
Grierson C,Nielsen E,Ketelaarc T,Schiefelbein J. Root hairs[J]. Arabidopsis Book,2014(12):e0172.
|
[44] |
周卫丰,史春阳,葛永胜,丁艳,胡训霞,等. 水稻耐低磷根系形态重塑基因挖掘及功能分析[J]. 扬州大学学报(农业与生命科学版),2022,43(3):1−11.
Zhou WF,Shi CY,Ge YS,Ding Y,Hu XX,et al. Gene mining and functional analysis of root morphological remodeling tolerant to low phosphorus in rice[J]. Journal of Yangzhou University (Agricultural and Life Science Edition),2022,43(3):1−11.
|
[45] |
曹婧,徐栋生,黄代红,袁军文,赵娟,等. 抱茎独行菜种皮粘液质相关基因TTG1的克隆、表达分析及功能鉴定[J]. 植物科学学报,2014,32(4):371−382.
Cao J,Xu DS,Huang DH,Yuan JW,Zhao J,et al. Cloning,characterization,and functional analysis of seed coat mucilage-related gene TTG1 from Lepidium perfoliatum[J]. Plant Science Journal,2014,32(4):371−382.
|