Advance Search

Yan JL,Wang MH,Liu YY,Yang Y,Wang XF,Cao YN. Identification and bioinformatics analysis of the FAD2 gene family in Aralia species[J]. Plant Science Journal,2024,42(4):488−498

. DOI: 10.11913/PSJ.2095-0837.23282
Citation:

Yan JL,Wang MH,Liu YY,Yang Y,Wang XF,Cao YN. Identification and bioinformatics analysis of the FAD2 gene family in Aralia species[J]. Plant Science Journal,2024,42(4):488−498

. DOI: 10.11913/PSJ.2095-0837.23282

Identification and bioinformatics analysis of the FAD2 gene family in Aralia species

More Information
  • Received Date: October 05, 2023
  • Accepted Date: November 25, 2023
  • Polyacetylenes (PAs) are a class of bioactive plant-specific defense compounds primarily produced by campanulid plants. Early PA biosynthesis is catalyzed by fatty acid desaturase 2 (FAD2). In this study, we identified theFAD2gene family inAralia elata(Miq.) Seem. andA. fargesiiFranch., members of the Araliaceae family, a major source of PA, and analyzed their conserved motifs, domains, chromosome distribution, gene collinearity, evolutionary relationships, molecular evolution rates, and expression patterns. Results indicated that theFAD2gene family inAraliahas undergone extensive expansion, likely through whole-genome duplication (WGD) or segmental duplication. The conserved motifs of FAD2, despite their different functions, were consistent, but diverged in representativeAraliaspecies with different life forms (herbaceous vs. woody). Furthermore,A. elatapossessed four different functionalFAD2genes, expressed differently in different tissues. This study holds important theoretical significance for the identification ofAraliaspecies, the discovery of new genes for PA synthesis, and the elucidation of the molecular mechanisms underlying the high diversity of PAs in campanulids.

  • [1]
    Milo R,Last RL. Achieving diversity in the face of constraints:lessons from metabolism[J]. Science,2012,336(6089):1663−1667. doi: 10.1126/science.1217665
    [2]
    Brockington SF,Yang Y,Gandia-Herrero F,Covshoff S,Hibberd JM,et al. Lineage-specific gene radiations underlie the evolution of novel betalain pigmentation in Caryophyllales[J]. New Phytol,2015,207(4):1170−1180. doi: 10.1111/nph.13441
    [3]
    Moghe GD,Leong BJ,Hurney SM,Daniel Jones A,Last RL. Evolutionary routes to biochemical innovation revealed by integrative analysis of a plant-defense related specialized metabolic pathway[J]. eLife,2017,6:e28468. doi: 10.7554/eLife.28468
    [4]
    董妍玲,潘学武. 植物次生代谢产物简介[J]. 生物学通报,2002,37(11):17−19. doi: 10.3969/j.issn.0006-3193.2002.11.007
    [5]
    Moghe GD,Kruse LH. The study of plant specialized metabolism:challenges and prospects in the genomics era[J]. Am J Bot,2018,105(6):959−962. doi: 10.1002/ajb2.1101
    [6]
    王年鹤,袁昌齐. 天然聚炔类化合物的研究概况[J]. 国外医学·药学分册,1990(3):129−132.
    [7]
    Negri R. Polyacetylenes from terrestrial plants and fungi:recent phytochemical and biological advances[J]. Fitote rapia,2015,106:92−109. doi: 10.1016/j.fitote.2015.08.011
    [8]
    Minto RE,Blacklock BJ. Biosynthesis and function of polyacetylenes and allied natural products[J]. Prog Lipid Res,2008,47(4):233−306. doi: 10.1016/j.plipres.2008.02.002
    [9]
    Christensen LP. Aliphatic C17-polyacetylenes of the falcarinol type as potential health promoting compounds in food plants of the Apiaceae family[J]. Recent Pat Food Nutr Agric,2011,3(1):64−77. doi: 10.2174/2212798411103010064
    [10]
    Feng T,Yang Y,Busta L,Cahoon EB,Wang HC,Lü SY. FAD2 gene radiation and positive selection contributed to polyacetylene metabolism evolution in campanulids[J]. Plant Physiol,2019,181(2):714−728. doi: 10.1104/pp.19.00800
    [11]
    Lee M,Lenman M,Banaś A,Bafor M,Singh S,et al. Identification of non-heme diiron proteins that catalyze triple bond and epoxy group formation[J]. Science,1998,280(5365):915−918. doi: 10.1126/science.280.5365.915
    [12]
    Higashi S,Murata N. An in vivo study of substrate specificities of acyl-lipid desaturases and acyltransferases in lipid synthesis in Synechocystis PCC6803[J]. Plant Physiol,1993,102(4):1275−1278. doi: 10.1104/pp.102.4.1275
    [13]
    Okuley J,Lightner J,Feldmann K,Yadav N,Lark E,Browse J. Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis[J]. Plant Cell,1994,6(1):147−158.
    [14]
    Busta L,Yim WC,LaBrant EW,Wang P,Grimes L,et al. Identification of genes encoding enzymes catalyzing the early steps of carrot polyacetylene biosynthesis[J]. Plant Physiol,2018,178(4):1507−1521. doi: 10.1104/pp.18.01195
    [15]
    Guo YL. Gene family evolution in green plants with emphasis on the origination and evolution of Arabidopsis thaliana genes[J]. Plant J,2013,73(6):941−951. doi: 10.1111/tpj.12089
    [16]
    Dar AA,Choudhury AR,Kancharla PK,Arumugam N. The FAD2 gene in plants:occurrence,regulation,and role[J]. Front Plant Sci,2017,8:1789. doi: 10.3389/fpls.2017.01789
    [17]
    Wu ZY,Raven PH,Hong DY. Flora of China:Vol. 13[M]. Beijing:Science Press;St. Louis:Missouri Botanical Garden Press,2007:480−489.
    [18]
    郑玲玲,裴凌鹏. 楤木属植物研究进展[J]. 中国民族医药杂志,2010,16(6):57−59. doi: 10.3969/j.issn.1006-6810.2010.06.032
    [19]
    李湘萍,向其柏. 中国楤木属的研究[J]. 南京林业大学学报(自然科学版),1992(2):17−24.

    Li XP,Xiang QB. Studies on the genus Aralia Linn.[J]. Journal of Nanjing Forestry University (Natural Sciences Edition),1992(2):17−24.
    [20]
    许旭东,张曙明,张聿梅,林耕,杨峻山. 反相高效液相色谱法测定楤木属植物中黄酮类和香豆精的含量[J]. 药学学报,1999,34(1):46−48.

    Xu XD,Zhang SM,Zhang YM,Lin G,Yang JS. Determination of flavones and coumarin in Aralia by RP-HPLC[J]. Acta Pharmaceutica Sinica,1999,34(1):46−48.
    [21]
    Wang Y,Zhang H,Ri HC,An ZY,Wang X,et al. Deletion and tandem duplications of biosynthetic genes drive the diversity of triterpenoids in Aralia elata[J]. Nat Commun,2022,13(1):2224. doi: 10.1038/s41467-022-29908-y
    [22]
    Chen CJ,Chen H,Zhang Y,Thomas HR,Frank MH,et al. TBtools:an integrative toolkit developed for interactive analyses of big biological data[J]. Mol Plant,2020,13(8):1194−1202. doi: 10.1016/j.molp.2020.06.009
    [23]
    Wang YP,Tang HB,DeBarry JD,Tan X,Li JP,et al. MCScanX:a toolkit for detection and evolutionary analysis of gene synteny and collinearity[J]. Nucleic Acids Res,2012,40(7):e49.
    [24]
    Tamura K,Stecher G,Kumar S. MEGA11:molecular evolutionary genetics analysis version 11[J]. Mol Biol Evol,2021,38(7):3022−3027. doi: 10.1093/molbev/msab120
    [25]
    Yang ZH. PAML 4:phylogenetic analysis by maximum likelihood[J]. Mol Biol Evol,2007,24(8):1586−1591. doi: 10.1093/molbev/msm088
    [26]
    马倩. 辽东楤木茎皮化学成分的研究[D]. 延吉:延边大学,2009:1−55.
    [27]
    Jiang MY,Yang CT,Pu XY,Fu GM,Wang W,et al. Polyacetylenes from the roots of Aralia dumetorum[J]. Rec Nat Prod,2019,13(5):424−428. doi: 10.25135/rnp.119.18.09.940
    [28]
    Kaufman L,Rousseeuw PJ. Finding Groups in Data:an Introduction to Cluster Analysis[M]. New York:Wiley,1990:1−342.
    [29]
    Hernández ML,Mancha M,Martínez-rivas JM. Molecular cloning and characterization of genes encoding two microsomal oleate desaturases (FAD2) from olive[J]. Phytochemistry,2005,66(12):1417−1426. doi: 10.1016/j.phytochem.2005.04.004
    [30]
    Lee KR,In Sohn S,Jung JH,Kim SH,Roh KH,et al. Functional analysis and tissue-differential expression of four FAD2 genes in amphidiploid Brassica napus derived from Brassica rapa and Brassica oleracea[J]. Gene,2013,531(2):253−262. doi: 10.1016/j.gene.2013.08.095
    [31]
    Wang Y,Zhang XG,Zhao YL,Prakash CS,He GH,et al. Insights into the novel members of the FAD2 gene family involved in high-oleate fluxes in peanut[J]. Genome,2015,58(8):375−383. doi: 10.1139/gen-2015-0008
    [32]
    Lee MW,Padilla CS,Gupta C,Galla A,Pereira A,et al. The FATTY ACID DESATURASE2 family in tomato contributes to primary metabolism and stress responses[J]. Plant Physiol,2020,182(2):1083−1099. doi: 10.1104/pp.19.00487
    [33]
    Martínez-Rivas JM,Sánchez-García A,Sicardo MD,García-Díaz MT,Mancha M. Oxygen-independent temperature regulation of the microsomal oleate desaturase (FAD2) activity in developing sunflower (Helianthus annuus) seeds[J]. Physiol Plantarum,2003,117(2):179−185. doi: 10.1034/j.1399-3054.2003.00039.x
    [34]
    Su WB,Jing Y,Lin SK,Yue Z,Yang XH,et al. Polyploidy underlies co-option and diversification of biosynthetic triterpene pathways in the apple tribe[J]. Proc Natl Acad Sci USA,2021,118(20):e2101767118. doi: 10.1073/pnas.2101767118
    [35]
    缪秀梅. 白沙蒿FAD2基因家族克隆与功能研究及转基因苜蓿评价[D]. 兰州:兰州大学,2020:1−95.
    [36]
    Jeon JE,Kim JG,Fischer CR,Mehta N,Dufour-Schroif C,et al. A pathogen-responsive gene cluster for highly modified fatty acids in tomato[J]. Cell,2020,180(1):176−187. e19.
    [37]
    Wen J. Systematics and Biogeography of Aralia L. (Araliaceae):revision of Aralia Sects. Aralia,Humiles,Nanae,and Sciadodendron[M]. Washington:Dept. of Botany,National Museum of Natural History,2011:1−172.
    [38]
    Zhou XR,Singh S,Liu Q,Green A. Combined transgenic expression of Δ12-desaturase and Δ12-epoxygenase in high linoleic acid seeds leads to increased accumulation of vernolic acid[J]. Funct Plant Biol,2006,33(6):585−592. doi: 10.1071/FP05297
    [39]
    Okada S,Zhou XR,Damcevski K,Gibb N,Wood C,et al. Diversity of Δ12 fatty acid desaturases in Santalaceae and their role in production of seed oil acetylenic fatty acids[J]. J Biol Chem,2013,288(45):32405−32413. doi: 10.1074/jbc.M113.511931
    [40]
    Yurchenko O,Shockey JM,Gidda SK,Silver MI,Chapman KD,et al. Engineering the production of conjugated fatty acids in Arabidopsis thaliana leaves[J]. Plant Biotechnol J,2017,15(8):1010−1023. doi: 10.1111/pbi.12695
    [41]
    Broun P,Boddupalli S,Somerville C. A bifunctional oleate 12-hydroxylase:desaturase from Lesquerella fendleri[J]. Plant J,1998,13(2):201−210. doi: 10.1046/j.1365-313X.1998.00023.x
    [42]
    Carlsson AS,Thomaeus S,Hamberg M,Stymne S. Properties of two multifunctional plant fatty acid acetylenase/desaturase enzymes[J]. Eur J Biochem,2004,271(14):2991−2997. doi: 10.1111/j.1432-1033.2004.04231.x
    [43]
    Cao SJ,Zhou XR,Wood CC,Green AG,Singh SP,et al. A large and functionally diverse family of Fad2 genes in safflower (Carthamus tinctorius L.)[J]. BMC Plant Biol,2013,13:5. doi: 10.1186/1471-2229-13-5
    [44]
    Martínez-Rivas JM,Sperling P,Lühs W,Heinz E. Spatial and temporal regulation of three different microsomal oleate desaturase genes (FAD2) from normal-type and high-oleic varieties of sunflower (Helianthus annuus L.)[J]. Mol Breeding,2001,8(2):159−168. doi: 10.1023/A:1013324329322
  • Related Articles

    [1]Zhao Yingmei, Lu Siyu, Xie Qianghua, Huang Dongliu, Wan Chunyan, Yang Quanguang, Meng Yiyi, Wu Hongjia, Zhu Shidan. Study on the differences in leaf traits between tropical-subtropical cycad gymnosperms and woody angiosperms[J]. Plant Science Journal, 2025, 43(1): 11-20. DOI: 10.11913/PSJ.2095-0837.24072
    [2]Wang Qin, Yang Da, Peng Xiaorong, Ke Yan, Zhang Yunbing, Zhang Jiaolin. Studies on leaf functional traits in key protected plants of Myristicaceae[J]. Plant Science Journal, 2024, 42(4): 519-532. DOI: 10.11913/PSJ.2095-0837.23289
    [3]Wang Qiuxue, Peng Shuting, Gan Wanyi, Peng Zhengdong, Xu Qi, Huang Liujing. Responses of leaf and fine root functional traits to water-salt gradients in the Fuzhou section of the Minjiang River Basin[J]. Plant Science Journal, 2024, 42(4): 454-465. DOI: 10.11913/PSJ.2095-0837.23270
    [4]Song Shuaishuai, Wu Hao, Lü Linyu, Xiao Zhiqiang, Yang Teng, Shi Hongwen, Wei Xinzeng. Geographic patterns of leaf functional traits and environmental drivers of national key protected wild plant Davidia involucrata Baillon[J]. Plant Science Journal, 2024, 42(2): 160-169. DOI: 10.11913/PSJ.2095-0837.23112
    [5]Jia Xiande, Lü Haiying, Wu Limei, Yang Yinan, Huang Renhao, Wang Hao, Niu Xin. Response of leaf functional traits and anatomical structure to altitude in Crataegus songarica K. Koch in Tianshan wild fruit forest[J]. Plant Science Journal, 2024, 42(2): 150-159. DOI: 10.11913/PSJ.2095-0837.23157
    [6]Zhang Ai-Ying, Fan Da-Yong, Ma Liang, Yang Dan, Xiong Gao-Ming, Xie Zong-Qiang. Intra-annual variations in leaf traits of Cynodon dactylon (L.) Pers. during exposure period in riparian zone of Three Gorges Reservoir Area[J]. Plant Science Journal, 2022, 40(4): 453-461. DOI: 10.11913/PSJ.2095-0837.2022.40453
    [7]Wang Ying-Kun, Lü Kun, Wu Yu, Chen Fang-Qing. Changes in the functional traits of Platycrater arguta Sieb. et Zucc. leaves with plant growth and development[J]. Plant Science Journal, 2021, 39(5): 526-534. DOI: 10.11913/PSJ.2095-0837.2021.50526
    [8]Geng Meng-Ya, Chen Fang-Qing, Lü Kun, Wang Yu-Bing, Xiang Lin, Xie Ling-Li. Effects of developmental stage on the leaf functional traits of the endangered shrub species Disanthus cercidifolius var. longipes[J]. Plant Science Journal, 2018, 36(6): 851-858. DOI: 10.11913/PSJ.2095-0837.2018.60851
    [9]Liu Yang, Fu Wen-Long, Cao Yu, Li Wei. Study on the functional traits of submerged macrophytes[J]. Plant Science Journal, 2017, 35(3): 444-451. DOI: 10.11913/PSJ.2095-0837.2017.30444
    [10]DING Ling-Zi, CHEN Ya-Jun, ZHANG Jiao-Lin. Leaf Traits and Their Associations among Liana Species in Tropical Rainforest[J]. Plant Science Journal, 2014, 32(4): 362-370. DOI: 10.3724/SP.J.1142.2014.40362
  • Other Related Supplements

Catalog

    Article views (150) PDF downloads (29) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return