Advance Search
Li Dan-Qi, Hu Wan, Han Cai-Xia, Chen Lu-Dan, Zhang Zhi-Yong, Zhong Ai-Wen, Wei Zong-Xian, Peng Yan-Song. Prediction of potential suitable distribution of Fokienia hodginsii (Dunn) Henry et Thomas based on MaxEnt model[J]. Plant Science Journal, 2020, 38(6): 743-750. DOI: 10.11913/PSJ.2095-0837.2020.60743
Citation: Li Dan-Qi, Hu Wan, Han Cai-Xia, Chen Lu-Dan, Zhang Zhi-Yong, Zhong Ai-Wen, Wei Zong-Xian, Peng Yan-Song. Prediction of potential suitable distribution of Fokienia hodginsii (Dunn) Henry et Thomas based on MaxEnt model[J]. Plant Science Journal, 2020, 38(6): 743-750. DOI: 10.11913/PSJ.2095-0837.2020.60743

Prediction of potential suitable distribution of Fokienia hodginsii (Dunn) Henry et Thomas based on MaxEnt model

Funds: 

This work was supported by grants from the National Natural Science Foundation of China (41961009), Science and Technology Service Network Initiative of the Chinese Academy of Sciences (KFJ-3W-No1), and Scientific Infrastructure and Capacity Building of Jiangxi Province (2017ZDD01002).

More Information
  • Received Date: March 09, 2020
  • Revised Date: April 22, 2020
  • Available Online: October 31, 2022
  • Published Date: December 27, 2020
  • Fokienia hodginsii (Dunn) Henry et Thomas is a rare and endangered species in China with important economic and ornamental value. Prediction of suitable habitats of F. hodginsii will help to facilitate practical and scientifically based protection measures for this species. Based on distribution data of 84 sites and 11 environmental factors in China, the MaxEnt model and geographic information system (GIS) were used to predict potentially suitable habitats of F. hodginsii. Results showed that the mean value of the area under the receiver operation characteristic curve (ROC) was 0.966 and the accuracy of the model was high, and thus suitable for predicting potential habitats of F. hodginsii. The suitable habitats were mainly located in the Wuyi, Luoxiao, and Nanling mountains, including hilly areas south of the Yangtze River, Fujian, Zhejiang, Guangdong, Guangxi, and the Sichuan basin. Jackknife results showed that the major factors determining the potential suitable distribution were minimum temperature of the coldest month, annual precipitation, and precipitation of the driest month. We deduced that summer and autumn precipitation resulting in pollination failure may be a key factor limiting the natural renewal and distribution of F. hodginsii.
  • [1]
    中国科学院中国植物志编辑委员会. 中国植物志:第7卷[M]. 北京:科学出版社, 1978:345-347.
    [2]
    王茜, 王成, 任彬彬, 张中霞, 段敏杰, 戴子云. 福建柏游憩林内挥发物成分春季日变化规律研究[J]. 安徽农学通报, 2019, 25(16):20-22.
    [3]
    卢钰铎, 彭映辉, 扶巧梅, 刘敏, 郁凯. 福建柏精油对蚊虫的生物活性[J]. 农药学学报, 2014, 16(3):293-299.

    Lu YD, Peng YH, Fu QM, Liu M, Yu K. Bioactivity of essential oil from leaves of Fokienia hodginsii against mosquitoes[J]. Chinese Journal of Pesticide Science, 2014, 16(3):293-299.
    [4]
    Zang MY, Su Q, Weng YH, Lu L, Zheng XY, Ye DQ, et al. Complete chloroplast genome of Fokienia hodginsii (Dunn) Henry et Thomas:insights into repeat regions variation and phylogenetic relationships in cupressophyta[J]. Forests, 2019, 10(7):528.
    [5]
    国家林业局, 农业部. 国家重点保护野生植物名录(第一批)[R]. 北京:中华人民共和国国务院公报, 2000.
    [6]
    李茂, 邓伦秀, 姜运力, 杨成华, 穆军. 贵州习水自然保护区福建柏群落组成及结构研究[J]. 西北林学院学报, 2013, 28(1):46-50, 57.

    Li M, Deng LX, Jiang YL, Yang CH, Mu J. Community composition and structure of Fokienia hodginsi community in Xishui Nature Reserve in Guizhou[J]. Journal of Northwest Forestry University, 2013, 28(1):46-50, 57.
    [7]
    林峰, 侯伯鑫, 杨宗武, 郑仁华, 曾志光. 福建柏属的起源与分布[J]. 南京林业大学学报(自然科学版), 2004, 28(5):22-26.

    Lin F, Hou BX, Yang ZW, Deng RH, Zeng ZG. Study on origin and natural distribution of Fokienia[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2004, 28(5):22-26.
    [8]
    吴淑玲. 福建柏轻基质育苗技术试验[J]. 林业勘察设计, 2018, 38(1):22-25.
    [9]
    杨德明, 张娅欣, 刘晓颖, 陈乾, 荣俊冬, 郑郁善. 福建柏在盐胁迫下的应答蛋白[J]. 福建农林大学学报(自然科学版), 2019, 48(6):760-764.

    Yang DM, Zhang YX, Liu XY, Chen Q, Rong JD, Zheng YS. Response protein of Fokienia hodginsii under salt stress[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2019, 48(6):760-764.
    [10]
    Zheng WJ, Gou XH, Su JJ, Fan HW, Yu AL, Liu WH, et al. Physiological and growth responses to increasing drought of an endangered tree species in southwest China[J]. Forests, 2019, 10(6):514.
    [11]
    Yin QY, Chen SF, Guo W, Huang YS, Huang YL, Zhou RC, et al. Pronounced genetic differentiation in Fokienia hodginsii revealed by simple sequence repeat markers[J]. Ecol Evol, 2018, 8(2):10938-10951.
    [12]
    李单琦, 谢德金, 王汉琪, 周少卿, 荣俊冬, 何天友, 等. 福建柏遗传多样性ISSR分析[J]. 中南林业科技大学学报, 2016, 36(5):63-67, 68.

    Li DQ, Xie DJ, Wang HQ, Zhou SQ, Rong JD, He TY, et al. ISSR analysis on genetic diversity of Fokienia hodginsii[J]. Journal of Central South University of Forestry & Technology, 2016, 36(5):63-67, 68.
    [13]
    段义忠, 鱼慧, 王海涛, 杜忠毓. 孑遗濒危植物四合木(Tetraena mongolica)的地理分布与潜在适生区预测[J]. 植物科学学报, 2019, 37(3):337-347.

    Duan YZ, Yu H, Wang HT, Du ZY. Geographical distribution and prediction of potentially suitable regions of endangered relict plant Tetraena mongolica[J]. Plant Science Journal, 2019, 37(3):337-347.
    [14]
    邹旭, 彭冶, 王璐, 李垚, 张往祥, 刘雪. 末次盛冰期以来气候变化对中国山荆子分布格局的影响[J]. 植物科学学报, 2018, 36(5):676-686.

    Zou X, Peng Y, Wang L, Li Y, Zhang WX, Liu X. Impact of climate change on the distribution pattern of Malus baccata (L.) Borkh.in China since the Last Glacial Maximum[J]. Plant Science Journal, 2018, 36(5):676-686.
    [15]
    Phillips SJ, Dudik M, Schapire RE. A maximum entropy approach to species distribution modeling[C]//Brodley C, ed.Proceedings of the 21s International Conference on Machine Learning. New York:Association for Computing Machinery,2004:655-662.
    [16]
    Phillips SJ, Anderson RP, Schapire RE. Maximum entropy modeling of species geographic distributions[J]. Ecol Model, 2006, 190(3-4):231-259.
    [17]
    Phillips SJ, Dudik M. Modeling of species distributions with MaxEnt:new extensions and a comprehensive evaluation[J]. Ecography, 2008, 31(2):161-175.
    [18]
    Padalia H, Srivastava V, Kushwaha SPS. Modeling potentialinvasion range of alien invasive species, Hyptis suaveolens (L.) Poit. in India:Comparison of MaxEnt and GARP[J]. Ecol Inform, 2014, 22:36-43.
    [19]
    陈陆丹, 胡菀, 李单琦, 程冬梅, 钟爱文. 珍稀濒危植物野生莲的适生分布区预测[J]. 植物科学学报, 2019, 37(6):731-740.

    Chen LD, Hu W, Li DQ, Chen DM, Zhong AW. Prediction of suitable distribution areas of the endangered plant wild Nelumbo nucifera Gaertn. in China[J]. Plant Science Journal, 2019, 37(6):731-740.
    [20]
    Qin AL, Liu B, Guo QS, Rainer B, Ma FQ, Jian ZJ, et al. MaxEnt modeling for predicting impacts of climate change on the potential distribution of Thuja sutchuenensis Franch., an extremely endangered conifer from southwes-tern China[J]. Glob Ecol Conserv, 2017, 10(C):139-146.
    [21]
    Zhang KL, Zhang Y, Zhou C, Meng JS, Sun J, Zhou TH, Tao J. Impact of climate factors on future distributions of Paeonia ostii across China estimated by MaxEnt[J]. Ecological Informatics, 2019, 50:62-67.
    [22]
    庄鸿飞, 秦浩, 王伟, 张殷波. 基于MaxEnt模型的云南红豆杉潜在适宜分布预测[J]. 山西大学学报(自然科学版), 2018, 41(1):233-240.

    Zhuang HF, Qin H, Wang W, Zhang YB. Prediction of the potential suitable distribution of taxus yunnanensis based on MaxEnt model[J]. Journal of Shanxi University (Natural Science Edition), 2018, 41(1):233-240.
    [23]
    龚维, 夏青, 陈红锋, 俞新华, 伍菲. 珍稀濒危植物伯乐树的潜在适生区预测[J]. 华南农业大学学报, 2015, 36(4):98-104.

    Gong X, Xia Q, Chen HF, Yu XH, Wu F. Prediction of potential distributions of Bretschneidera sinensis, an rare and endangered plant species in China[J]. Journal of South China Agricultural University, 2015, 36(4):98-104.
    [24]
    胡菀, 张志勇, 陈陆丹, 彭焱松, 汪旭. 末次盛冰期以来观光木的潜在地理分布变迁[J]. 植物生态学报, 2020, 44(1):44-55.

    Hu W, Zhang ZY, Chen LD, Peng YS, Wang X. Changes in potential geographical distribution of Tsoongiodendron odorum since the Last Glacial Maximum[J]. Chinese Journal of Plant Ecology, 2020, 44(1):44-55.
    [25]
    徐军, 曹博, 白成科. 基于MaxEnt濒危植物独叶草的中国潜在适生分布区预测[J]. 生态学杂志, 2015, 34(12):3354-3359.

    Xu J, Cao B, Bai CK. Prediction of potential suitable distribution of endangered plant Kingdonia uniflora in China with MaxEnt[J]. Chinese Journal of Ecology, 2015, 34(12):3354-3359.
    [26]
    侯伯鑫, 林峰, 余格非, 程政红. 福建柏资源分布的研究[J]. 中国野生植物资源, 2005, 24(1):58-59, 64.

    Hou BX, Lin F, Yu GF, Cheng ZH. Study on distribution of Fokienia hodginsii Resource[J]. Chinese Wild Plant Resources, 2005, 24(1):58-59, 64.
    [27]
    侯伯鑫, 林峰, 余格非, 程政红. 福建柏地理种源遗传变异及早期选择研究[J]. 植物遗传资源学报, 2004, 5(2):179-184.

    Hou BX, Lin F, Yu GF, Cheng ZH. Genetic variation of geographical provenance and nonage selection of Fokie-nia hodginsii[J]. Journal of Plant Genetic Resources, 2004, 5(2):179-184.
    [28]
    胡淑萍, 何礼文. 基于MaxEnt与ArcGIS对白水江国家级自然保护区缺苞箭竹适生区分析[J].生态学杂志, 2020, 39(6):2115-2122.

    Hu SP, He LW. Analysis of suitable distribution areas of Fargesia denudate in Baishuijiang National Nature Reserve using MaxEnt model and ArcGIS[J]. Chinese Journal of Ecology, 2020, 39(6):2115-2122.
    [29]
    Swets JA. Measuring the accuracy of diagnostic systems[J]. Science, 1988, 240(4857):1285-1293.
    [30]
    Ding MY, Meng KK, Fan Q, Tan WZ, Liao WB, Chen SF. Development and validation of EST-SSR markers for Fokienia hodginsii (Cupressaceae)[J]. Appl Plant Sci, 2017, 5(3):1600152.
    [31]
    樊莹. 长白山主要树种幼树的生长与生理生态特征对海拔梯度的响应[D]. 北京:北京林业大学, 2019:81-82.
    [32]
    黄红兰, 钟沃谷, 衣德萍, 蔡军火, 张露. 未来气候变化对我国毛红椿适生区分布格局的影响预测[J]. 南京林业大学学报(自然科学版), 2020, 44(3):163-170.

    Huang HL, Zhong WG, Yi DP, Cai JH, Zhang L. Predicting the impact of future climate change on the distribution patterns of Toona ciliata var. pubescens in China[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2020, 44(3):163-170.
    [33]
    邱浩杰, 孙杰杰, 徐达, 焦洁洁, 薛敏, 袁位高, 等. 末次盛冰期以来红豆树在不同气候变化情景下的分布动态[J]. 生态学报, 2020,40(9):3016-3026.

    Qiu HJ, Sun LL, Xu D, Jiao JJ, Xue M, Yuan WG, et al. The distribution dynamics of Ormosia hosiei under different climate change scenarios since the Last Glacial Maximum[J]. Acta Ecologica Sinica, 2020,40(9):3016-3026.
    [34]
    Su JJ, Gou XH, Deng Y, Zhang RB, Liu WH, Zhang F, et al. Tree growth response of Fokienia hodginsii to recent climate warming and drought in southwest China[J]. International Journal of Biometeorology, 2017, 61(12):2085-2096.
    [35]
    侯伯鑫, 林峰, 余格非, 程政红, 张新华, 陶申绵. 福建柏地理种源开花与结实变异规律的研究[J]. 植物遗传资源学报, 2005, 6(2):163-167.

    Hou BX, Lin F, Yu GF, Cheng ZH, Zhang XH, Tao SM. Study on law of flower and cone of Fokienia hodginsii provenance[J]. Journal of Plant Genetic Resources, 2005, 6(2):163-167.
    [36]
    孙照渤, 黄艳艳, 倪东鸿. 我国秋季连阴雨的气候特征及大气环流特征[J]. 大气科学学报, 2016, 39(4):480-489.

    Sun ZB, Huang YY, Ni DH. Climate and cir-culation cha-racteristics of continuous autumn rain in China[J]. Tran-sactions of Atmospheric Sciences, 2016, 39(4):480-489.
    [37]
    朱亚如, 龚燕兵. 风媒传粉的研究方法探讨[J]. 生物多样性, 2017, 25(8):864-873.

    Zhu YR, Gong YB. Methods of wind pollination[J]. Biodiversity Science, 2017, 25(8):864-873.
    [38]
    祖元刚, 于景华, 王爱民. 红松天然种群风媒传粉特点的研究[J]. 生态学报, 2000, 20(3):430-433.

    Zu YG, Yu JH, Wang AM. Study on pollination characte-ristics of natural population of Pinus koraiensis[J]. Acta Ecologica Sinica, 2000, 20(3):430-433.
    [39]
    Yan HY, Feng L, Zhao YF, Feng L, Wu D, Zhu CP. Prediction of the spatial distribution of Alternanthera philoxeroides in China based on ArcGIS and MaxEnt[J]. Global Ecology and Conservation, 2020, 21:1-8.
    [40]
    谭雪, 张林, 张爱平, 王毅, 黄丹, 伍小刚, 等. 孑遗植物长苞铁杉(Tsuga longibracteata)分布格局对未来气候变化的响应[J]. 生态学报, 2018, 38(24):8934-8945.

    Tan X, Zhang L, Zhang AP, Wang Y, Huang D, Wu XG, et al. The suitable distribution area of Tsuga longibracteata revealed by a climate and spatial constraint model under future climate change scenarios[J]. Acta Ecologica Sinica, 2018, 38(24):8934-8945.
    [41]
    焦阳, 邵云云, 廖景平, 黄宏文, 胡华斌, 张全发, 等. 中国植物园现状及未来发展策略[J]. 中国科学院院刊, 2019, 34(12):1351-1358.

    Jiao Y, Shao YY, Liao JP, Huang HW, Hu HB, Zhang QF, et al. Status and future strategies of Chinese botanical gardens[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(12):1351-1358.
    [42]
    李单琦. 福建柏遗传多样性研究与景观型福建柏良种选择[D]. 福州:福建农林大学, 2015:34-39.
    [43]
    Thi H, Hong D, Dirk H. Fujian cypress and two other threatened tree species in three conservation zones of a nature reserve in north-western Vietnam[J]. For Ecosyst, 2017, 4(1):4-29.
    [44]
    陈衍如, 谢慧敏, 罗火林, 杨柏云, 熊冬金. 气候变化对寒兰分布的影响及其分布格局模拟[J]. 应用生态学报, 2019, 30(10):3419-3425.

    Chen YR, Xie HM, Luo HL, Yang BY, Xiong DJ. Impacts of climate change on the distribution of Cymbidium kanran and the simulation of distribution pattern[J]. Chinese Journal of Applied Ecology, 2019, 30(10):3419-3425.
  • Related Articles

    [1]Sun Linjuan, Liu Taoli, Liu Hai, Yuan Dingyang, Yang Xulei, Xu Yusheng, Chen Siyang, Zeng Jianguang, Huang Yubo, Tan Yanning. Effect of ascorbic acid oxidation inhibition on growth of Oryza sativa L. seedlings under abscisic acid (ABA) treatment[J]. Plant Science Journal, 2024, 42(6): 806-814. DOI: 10.11913/PSJ.2095-0837.23378
    [2]Sun De-Zhi, Han Xiao-Ri, Peng Jing, Fan Fu, Song Gui-Yun, Yang Heng-Shan. Effects of exogenous nitric oxide and salicylic acid on membrane peroxidation and the ascorbate-glutathione cycle in leaves of Lycopersicon esculentum seedlings under NaCl stress[J]. Plant Science Journal, 2018, 36(4): 612-622. DOI: 10.11913/PSJ.2095-0837.2018.40612
    [3]YAN Zhi-Ming, SUN Jin, GUO Shi-Rong, WEI Yue, HU De-Long, WANG Quan-Zhi. Effects of Exogenous Proline on the Ascorbate-Glutathione Cycle in Roots of Cucumis melo Seedlings under Salt Stress[J]. Plant Science Journal, 2014, 32(5): 502-508. DOI: 10.11913/PSJ.2095-0837.2014.50502
    [4]WEI Jin-Chi, YANG Hai-Ling. Functional Divergence of Two Glutathione Peroxidase Genes in Oryza sativa[J]. Plant Science Journal, 2013, 31(1): 64-72. DOI: 10.3724/SP.J.1142.2013.10064
    [5]QIU Zong-Bo, LI Fang-Min, WANG Fang, YUE Ming. Effects of CO2 Laser on Glutathione-dependent Antioxidative System in Wheat Seedling under Drought Stress[J]. Plant Science Journal, 2008, 26(4): 402-406.
    [6]LI Cong-Qiang, LIN Gang, LI Ke-Xiu, SONG Yun-Chun, XIONG Zhi-Yong, HE Guang-Yuan. Cytological Identification on the Interspecific Hybrid of Zea mays and Zea diploperennis[J]. Plant Science Journal, 2006, 24(1): 1-5.
    [7]DONG Gao-Feng, CHEN Yi-Zhu, LI Geng-Guang, HUANG Tao, YANG Cheng-Wei. Xanthophyll Cycle and Non-Radiative Energy Dissipation in Sun and Shade Plants[J]. Plant Science Journal, 2001, 19(2): 128-134.
    [8]Li Minghong, Yu Mingjian, Chen Qichang. ACCUMULATION AND CYCLING OF CALCIUM IN AN EVERGREEN BROAD-LEAVED FOREST DOMINATED BY CYCLOBALANOPSIS GLAUCA IN SE, CHINA[J]. Plant Science Journal, 2000, 18(2): 131-137.
    [9]Zhao Bosheng, Mo Hua. DETOXICATION OF ASCORBIC ACID AND MOLYSITE ON THE ROOT GROWTH OF GARLIC UNDER CADMIUM POLLUTION[J]. Plant Science Journal, 1997, 15(2): 167-172.
    [10]Lin Peng. BIOMASS AND ELEMENT CYCLE OF KANDELIA FOREST, CHINA[J]. Plant Science Journal, 1989, 7(3): 251-257.
  • Cited by

    Periodical cited type(9)

    1. 徐萌,王亚楠,李婷婷,赵新英. 拟南芥根中细胞器特异标记蛋白质的定位观察. 山东农业大学学报(自然科学版). 2025(01): 125-132 .
    2. 朱钰雅,倪雅迪,徐羚欣,肖平,段金廒. 中药蛋白结构与功能研究方法与策略探讨. 中国中药杂志. 2024(07): 1705-1716 .
    3. 陈甘露,颜彦,孟宪伟,付莉莉,邱先进,丁泽红,胡伟. 木薯MebZIP2基因克隆及其功能分析. 福建农业学报. 2024(02): 137-146 .
    4. 代蕊,陈崎,爽爽,张岩,张志强,米福贵. 紫花苜蓿MsJAR1基因克隆及表达分析. 草地学报. 2024(05): 1370-1377 .
    5. 韩青,张大伟. 植物蛋白的亚细胞定位观察虚拟仿真实验. 实验科学与技术. 2024(04): 84-89 .
    6. 韦鎔宜,段鹏,李培兰,罗丹,史国民,代吴斌,李凤珍,何涛. 水母雪兔子通气组织形成相关基因SmPAD4的克隆及表达分析. 广西植物. 2024(12): 2265-2278 .
    7. 黄馨田,韩慧杰,李宇琛,刘亚玲,张雅荣,赵彦. 蒙农杂种冰草AcdMYB1基因克隆及表达分析. 草地学报. 2023(08): 2334-2342 .
    8. 李佳楠,高兴泉,李卓,滕小华,黄斌,张继成,唐友. 四种机器学习算法预测大豆蛋白质定位对比研究. 大豆科学. 2022(03): 337-344 .
    9. 苏倩,杜文宣,马琳,夏亚迎,李雪,祁智,庞永珍. 紫花苜蓿MsCIPK2的克隆及功能分析. 中国农业科学. 2022(19): 3697-3709 .

    Other cited types(40)

Catalog

    Article views (744) PDF downloads (687) Cited by(49)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return