Advance Search
Zhao Cai-Mei, Huang Xing-Qi, Yin Fu-You, Li Ding-Qin, Chen Yue, Chen Ling, Cheng Zai-Quan. Research progress on NAC transcription factor family in Oryza sativa L.[J]. Plant Science Journal, 2020, 38(2): 278-287. DOI: 10.11913/PSJ.2095-0837.2020.20278
Citation: Zhao Cai-Mei, Huang Xing-Qi, Yin Fu-You, Li Ding-Qin, Chen Yue, Chen Ling, Cheng Zai-Quan. Research progress on NAC transcription factor family in Oryza sativa L.[J]. Plant Science Journal, 2020, 38(2): 278-287. DOI: 10.11913/PSJ.2095-0837.2020.20278

Research progress on NAC transcription factor family in Oryza sativa L.

Funds: 

This work was supported by grants from the National Important Researching and Planning Project of China (2016YFD100101-10-3), National Key Breeding Special of China (2017YFD0100202), and Yunnan Technology Talents and Platform Project (2019HB034).

More Information
  • Received Date: August 07, 2019
  • Revised Date: October 24, 2019
  • Available Online: October 31, 2022
  • Published Date: April 27, 2020
  • The NAC transcription factor family is an important class of transcriptional regulatory factors and is found ubiquitously in plants. In rice (Oryza sativa L.), the NAC gene family is involved in cell growth, tissue development, organ aging, and adventitious stress responses, and plays an important role in responding to external environmental stimuli. In this paper, we introduce the structural characteristics of the O. sativa NAC transcription factor family and its involvement in regulating plant growth and development. We also discuss the involvement of NAC genes in defensive responses to cold, salt, and pathogenic bacterial stress. Future research directions are analyzed and considered. Overall, this paper provides theoretical guidance and reference for relevant future study.
  • [1]
    Hussey SG, Saïdi MN, Hefer CA, Myburg AA, Grima-Pettenati J. Structural, evolutionary and functional analysis of the NAC domain protein family in Eucalyptus[J]. New Phytol, 2015, 206(4):1337-1350.
    [2]
    唐宽刚, 任美艳, 张文君, 庞新跃, 薛敏, 等. 沙冬青 AmNAC6 基因的克隆与功能初步分析[J]. 植物科学学报, 2018, 36(5):705-712.

    Tang KG, Ren MY, Zhang WJ, Pang XY, Xue M, et al. Cloning and preliminary functional analysis of AmNAC6 from Ammopiptanthus mongolicus[J]. Plant Science Journal, 2018, 36(5):705-712.
    [3]
    Chung PJ, Jung H, Yang DC, Kim JK. Genome-wide analyses of direct target genes for four rice NAC-domain transcription factors involved in drought tolerance[J]. BMC Genomics, 2018, 19(1):40.
    [4]
    Puranik S, Sahu PP, Srivastava PS, Prasad M. NAC:regu-lation and role in stress tolerance[J]. Trends Plant, 2012, 17(6):369-381.
    [5]
    Nuruzzaman M, Sharoni AM, Kikuchi S. Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants[J]. Front Microbiol, 2013, 4:248.
    [6]
    Zhang J, Li L, Huang LP, Zhang MM, Chen ZY, et al. Maize NAC-domain retained splice variants act as dominant negatives to interfere with the full-length NAC counterparts[J]. Plant Sci, 2019, 289:110256.
    [7]
    Jensen MK, Kjaersgaard T, Nielsen MM, Galberg P, Petersen K, et al. The Arabidopsis thaliana NAC transcription factor family:structure-function relationships and determinants of ANAC019 stress signalling[J]. Bio J, 2010, 426(2):183-196.
    [8]
    Ernst HA, Olsen AN, Skriver K, Larsen S, Leggio LL. Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors[J]. Embo Rep, 2014, 5(3):297-303.
    [9]
    Zhang Y, Yun Z, Gong L, Qu H, Duan X, et al. Comparison of miRNA evolution and function in plants and animals[J]. Microrna, 2018, 7(1):4-10.
    [10]
    Lee MH, Jeon HS, Kim HG, Park OK. An Arabidopsis NAC transcription factor NAC4 promotes pathogen-induced cell death under negative regulation by microRNA164[J].New Phytol, 2017, 214(1):343-360.
    [11]
    Guo HS, Xie Q, Fei JF, Chua NH. MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development[J]. Plant Cell, 2005, 17(5):1376-1386.
    [12]
    Lee MH, Jeon HS, Kim HG, Park OK. An Arabidopsis NAC transcription factor NAC4 promtes pathogen-induced cell death under negative regulation by microRNA164[J]. 2017, New Phytol, 214(1):343-360.
    [13]
    Li YF, Zheng Y, Addo-Quaye C, Zhang L, Saini A, et al. Transcriptome-wide identification of microRNA targets in rice[J]. Plant J, 2010, 62(5):742-759.
    [14]
    Fang Y, Xie K, Xiong L. Conserved miR164-targeted NAC genes negatively regulate drought resistance in rice[J]. J Exp Bot, 2014, 65(8):2119-2135.
    [15]
    Xu X, Bai H, Liu C, Chen E, Chen Q, et al. Genome-wide analysis of microRNAs and their target genes related to leaf senescence of rice[J]. PLoS One, 2014, 9(12):e114313.
    [16]
    Xie Q, Guo HS, Dallman G, Fang S, Weissman AM, et al. SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals[J]. Nature, 2002, 419(6903):167-170.
    [17]
    Kleinow T, Himbert S, Krenz B, Jeske H, Koncz C. NAC domain transcription factor ATAF1 interacts with SNF1-related kinases and silencing of its subfamily causes severe developmental defects in Arabidopsis[J]. Plant Sci, 2009, 177(4):360-370.
    [18]
    Kaneda T, Taga Y, Takai R, Iwano M, Matsui H, et al. The transcription factor OsNAC4 is a key positive regulator of plant hypersensitive cell death[J]. EMBO J, 2009, 28(7):926-936.
    [19]
    Kikuchi K, Ueguehi-Tanaka M, Yoshida KT, Nagato Y, Matsusoka M, et al. Molecular analysis of the NAC gene family in rice[J]. Mol Gen Genet, 2000, 262(6):1047-1051.
    [20]
    Ooka H. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana[J]. DNA Res, 2003, 10(6):239-247.
    [21]
    Fang YJ, You J, Xie K, Xie WB, Xiong LZ. Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice[J]. Mol Genet Genomics, 2008, 280:547-563.
    [22]
    Nuruzzaman M, Manimekalai R, Sharoni AM, Satoh K, Kondoh H, et al. Genome-wide analysis of NAC transcription factor family in rice[J]. Gene, 2010, 465(1-2):30-44.
    [23]
    段俊枝, 李莹, 赵明忠, 魏小春, 任银铃. NAC转录因子在水稻抗逆基因工程中的应用进展[J]. 中国稻米, 2017, 23(6):37-42.

    Duan JZ, Li Y, Zhao MZ, Wei XC, Ren YL. Progress on application of NAC transcripton factors in rice stress tole-rance genetic engineering[J]. China Rice, 2017, 23(6):37-42.
    [24]
    孙利军. 水稻ONAC家族基因重叠表达特性及其在抗病逆境中的功能研究[D]. 杭州:浙江大学, 2012.
    [25]
    Wang Z, Dane F. NAC(NAM/ATAF/CUC) transcription factors in different stresses and their signaling pathway[J]. Acta Physiol Plantararum, 2013, 35:1397-1408.
    [26]
    Huang DB, Wang SG, Zhang BC, Shang-Guan KK, Shi YY, et al. A gibberellin-mediated Della-NAC signaling cascade regulates cellulose synthesis in rice[J]. Plant Cell, 2015, 27(6):1681-1696.
    [27]
    Chen X, Lu SC, Wang YF, Zhang X, Lü B, et al. OsNAC2 encoding a NAC transcription factor that affects plant height through mediating the gibberellic acid pathway in rice[J]. Plant J, 2015, 82(2):302-314.
    [28]
    Mao CJ, Lu SC, Lü B, Zhang B, Shen JB, et al.A rice NAC transcription factor promotes leaf senescence via ABA biosynthesis[J]. Plant Physiol, 2017, 174(3):1747-1763.
    [29]
    Shen JB, Lü B, Luo LQ, He JM, Mao CJ, et al. The NAC-type transcription factor OsNAC2 regulates ABA-depen-dent genes and abiotic stress tolerance in rice[J]. Sci Rep, 2017, 7:40641.
    [30]
    Zhou Y, Huang WF, Liu L, Chen TY, Zhou F, et al. Identification and functional characterization of a rice NAC gene involved in the regulation of leaf senescence[J]. BMC Plant Biol, 2013, 13(1):132.
    [31]
    El Mannai Y, Akabane K, Hiratsu K, Satoh-nagasawa N, Wabiko H. The NAC transcription factor gene OsY37(ONAC011) promotes leaf senescence and accelerates heading time in rice[J]. Int J Mol Sci, 2017, 18(10):2165.
    [32]
    Ye Y, Wu K, Chen J, Liu Q, Wu Y, et al. OsSND2, a NAC family transcription factor, is involved in secondary cell wall biosynthesis through regulating MYBs expression in rice[J]. Rice, 2018, 11(1):36.
    [33]
    Yokotani N, Ichikawa T, Kondou Y, Matsui M, Hirochika H, et al. Tolerance to various environmental stresses conferred by the salt-responsive rice gene ONAC063 in transgenic Arabidopsis[J]. Planta, 2009, 229(5):1065-1075.
    [34]
    Sakuraba Y, Piao W, Lim JH, Han SH, Kim YS, et al. Rice ONAC106 inhibits leaf senescence and increases salt tolerance and tiller angle[J]. Plant Cell Physiol, 2015, 56(12):2325-2339.
    [35]
    Wang B, Zhong ZH, Zhang HH, Wang X, Liu BL, et al. Targeted mutagenesis of NAC transcription factor gene, OsNAC041, leading to salt sensitivity in rice[J]. Rice Sci, 2019, 26(2):98-108.
    [36]
    Fang YJ, Liao KF, Du H, Xu Y, Song HZ, et al. A stress-responsive NAC transcripton factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice[J]. J Exp Bot, 2015, 66(21):6803-6817.
    [37]
    Gao F, Xiong AS, Peng RH, Jin XF, Zhu B, et al. OsNAC52, a rice NAC transcription factor, potentially responds to ABA and confers drought tolerance in transge-nic plants[J]. Plant cell Tissue Organ Cult, 2010, 100(3):255-262.
    [38]
    Hu HH, Dai MQ, Yao JL, Xiao BZ, Xiong LH. Over-expressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice[J]. Proc Natl Acad Sci USA, 2006, 103(35):12987-12992.
    [39]
    Liu GZ, Li XL, Jin SX, Liu XY, Zhu LF, et al. Overexpression of rice NAC gene SNAC1 improves drought and salt tolerance by enhancing root development and reducing transpiration rate in transgenic cotton[J]. PLoS One, 2014, 9(7):e86895.
    [40]
    Redillas C, Jeong JS, Kim YS, Jung H, Bang SW, et al. The overexpression of OsNAC9alters the root architecture of rice plants enhancing drought resistance and grain yield under field conditions[J]. Plant Biotechnol J, 2012, 10(7):792-805.
    [41]
    You J, Zong W, Du H, Hu HH, Xiong LZ. A special member of the rice SRO family, OsSRO1c, mediates responses to multiple abiotic stresses through interaction with various transcription factors[J]. Plant Mol Biol, 2014, 84(6):693-705.
    [42]
    You J, Zong W, Hu HH, Li XH, Xiao JH, et al. A STRESS-RESPONSIVE NAC1-regulated protein phosphatase gene rice protein phosphatase18 modulates drought and oxidative stress tolerance through abscisic acid-independent reactive oxygen species scavenging in rice[J]. Plant Physiol, 2014, 166(4):2100-2114.
    [43]
    Zheng XN, Zhen B, Lu GJ, Han B. Overexpression of a NAC transcription factor enhances rice drought and salt tolerance[J]. Biochem Biophys Res Commun, 2009, 379(4):985-989.
    [44]
    Jeong JS, Kim YS, Baek KH, Jung H, Ha SH,et al. Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions[J]. Plant Physiol, 2010, 153(1):185-197.
    [45]
    Hong Y, Zhang H, Huang L, Li D, Song F. Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice[J]. Front Plant Sci, 2016, 7:4.
    [46]
    Hu HH, You J, Fang YJ, Zhu XY, Qi ZY, et al. Erratum to:characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice[J]. Plant Mol Biol, 2010, 72:567-568.
    [47]
    Rachmat A, Nugroho S, Sukma D, Aswidinnoor H. Overexpression of OsNAC6 transcription factor from Indonesia rice cultivar enhances drought and salt tolerance[J]. Emir J Food Agr, 2014, 26(6):519-527.
    [48]
    Chung PJ, Kim YS, Jeong JS, Park SH, Nahm BH,et al. The histone deacetylase OsHDAC1 epigenetically regulates the OsNAC6 gene that control seedling root growth in rice[J]. Plant J, 2009, 59(5):764-776.
    [49]
    Lee DK, Chung PJ, Jeong JS, Jang G, Bang SW, et al. The rice OsNAC6 transcription factor orchestrates multiple molecular mechanisms involving root structural adaptions and nicotianamine biosynthesis for drought tolerance[J]. Plant Biotechnol J, 2017,15(6):754-764.
    [50]
    Jeong JS, Kim YS, Redillas MC, Jang G, Jung H, et al. OsNAC5 overexpression enlarges root diameter in rice plants leading to enhanced drought tolerance and increased grain yield in the field[J]. Plant Biotechnol J, 2013, 11(1):101-114.
    [51]
    Chen X, Wang YF, Lü B, Li J, Luo LQ, et al. The NAC family transcription factor OsNAP confers abiotic stress response through the ABA pathway[J]. Plant Cell Physiol, 2014, 55(3):604-619.
    [52]
    Fang Y, Xie K, Xiong L. Conserved miR164-targeted NAC genes negatively regulate drought resistance in rice[J]. J Exp Bot, 2014, 65(8):2119-2135.
    [53]
    De Abreu Neto JB, Hurtado-Perez MC, Wimmer MA, Frei M. Genetic factors underlying boron toxicity tolerance in rice:genome-wide association study and transcriptomic analysis[J]. J Exp Bot, 2016, 68(3):687-700.
    [54]
    Huang L, Hong YB, Zhang HJ, Li DY, Song FM. Rice NAC transcription factor ONAC095 plays opposite roles in drought and cold stress tolerance[J]. BMC Plant Biol, 2016, 16(1):203.
    [55]
    Nakashima K, Tran LP, Nguyen DV, Fujita M, Maruyama K, et al. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice[J]. Plant J, 2007, 51(4):617-630.
    [56]
    Lin RM, Zhao WS, Meng XB, Wang M, Peng YL. Rice gene OsNAC19 encodes a novel NAC-domain transcription factor and responds to infection by Magnaporthe grisea[J]. Plant Sci, 2007, 172(1):120-130.
    [57]
    Sun LJ, Zhang HJ, Li DY, Huang L, Hong YB, et al. Functions of rice NAC transcriptional factors, ONAC122 and ONAC131, in defense responses against Magnaporthe grisea[J]. Plant Mol Biol, 2013, 81(1-2):41-56.
    [58]
    Yokotani N, Tsuchida-Mayama T, Ichikawa H, Mitsuda N, Ohme-Tak-agi M, et al. OsNAC111, a blast disease-response transcription factor in rice, positively regulates the expression of defense-related genes[J]. Mol Plant-Microbe Interact, 2014, 27(10):1027-1034.
    [59]
    Wang ZY, Xia YQ, Lin SY, Wang YR, Guo BH, et al. Osa-miR164a targets OsNAC60 and negatively regulates rice immunity against the blast fungus Magnaporthe oryzae[J]. Plant J, 2018, 95(4):584-597.
    [60]
    Yoshii M, Yamazaki M, Rakwal R, Kishi-kaboshi M, Miyao A, et al. The NAC transcription factor RIM1 of rice is a new regulator of jasmonate signaling[J]. Plant J, 2010, 61(5):804-815.
  • Related Articles

    [1]Sun Linjuan, Liu Taoli, Liu Hai, Yuan Dingyang, Yang Xulei, Xu Yusheng, Chen Siyang, Zeng Jianguang, Huang Yubo, Tan Yanning. Effect of ascorbic acid oxidation inhibition on growth of Oryza sativa L. seedlings under abscisic acid (ABA) treatment[J]. Plant Science Journal, 2024, 42(6): 806-814. DOI: 10.11913/PSJ.2095-0837.23378
    [2]Sun De-Zhi, Han Xiao-Ri, Peng Jing, Fan Fu, Song Gui-Yun, Yang Heng-Shan. Effects of exogenous nitric oxide and salicylic acid on membrane peroxidation and the ascorbate-glutathione cycle in leaves of Lycopersicon esculentum seedlings under NaCl stress[J]. Plant Science Journal, 2018, 36(4): 612-622. DOI: 10.11913/PSJ.2095-0837.2018.40612
    [3]YAN Zhi-Ming, SUN Jin, GUO Shi-Rong, WEI Yue, HU De-Long, WANG Quan-Zhi. Effects of Exogenous Proline on the Ascorbate-Glutathione Cycle in Roots of Cucumis melo Seedlings under Salt Stress[J]. Plant Science Journal, 2014, 32(5): 502-508. DOI: 10.11913/PSJ.2095-0837.2014.50502
    [4]WEI Jin-Chi, YANG Hai-Ling. Functional Divergence of Two Glutathione Peroxidase Genes in Oryza sativa[J]. Plant Science Journal, 2013, 31(1): 64-72. DOI: 10.3724/SP.J.1142.2013.10064
    [5]QIU Zong-Bo, LI Fang-Min, WANG Fang, YUE Ming. Effects of CO2 Laser on Glutathione-dependent Antioxidative System in Wheat Seedling under Drought Stress[J]. Plant Science Journal, 2008, 26(4): 402-406.
    [6]LI Cong-Qiang, LIN Gang, LI Ke-Xiu, SONG Yun-Chun, XIONG Zhi-Yong, HE Guang-Yuan. Cytological Identification on the Interspecific Hybrid of Zea mays and Zea diploperennis[J]. Plant Science Journal, 2006, 24(1): 1-5.
    [7]DONG Gao-Feng, CHEN Yi-Zhu, LI Geng-Guang, HUANG Tao, YANG Cheng-Wei. Xanthophyll Cycle and Non-Radiative Energy Dissipation in Sun and Shade Plants[J]. Plant Science Journal, 2001, 19(2): 128-134.
    [8]Li Minghong, Yu Mingjian, Chen Qichang. ACCUMULATION AND CYCLING OF CALCIUM IN AN EVERGREEN BROAD-LEAVED FOREST DOMINATED BY CYCLOBALANOPSIS GLAUCA IN SE, CHINA[J]. Plant Science Journal, 2000, 18(2): 131-137.
    [9]Zhao Bosheng, Mo Hua. DETOXICATION OF ASCORBIC ACID AND MOLYSITE ON THE ROOT GROWTH OF GARLIC UNDER CADMIUM POLLUTION[J]. Plant Science Journal, 1997, 15(2): 167-172.
    [10]Lin Peng. BIOMASS AND ELEMENT CYCLE OF KANDELIA FOREST, CHINA[J]. Plant Science Journal, 1989, 7(3): 251-257.
  • Cited by

    Periodical cited type(9)

    1. 徐萌,王亚楠,李婷婷,赵新英. 拟南芥根中细胞器特异标记蛋白质的定位观察. 山东农业大学学报(自然科学版). 2025(01): 125-132 .
    2. 朱钰雅,倪雅迪,徐羚欣,肖平,段金廒. 中药蛋白结构与功能研究方法与策略探讨. 中国中药杂志. 2024(07): 1705-1716 .
    3. 陈甘露,颜彦,孟宪伟,付莉莉,邱先进,丁泽红,胡伟. 木薯MebZIP2基因克隆及其功能分析. 福建农业学报. 2024(02): 137-146 .
    4. 代蕊,陈崎,爽爽,张岩,张志强,米福贵. 紫花苜蓿MsJAR1基因克隆及表达分析. 草地学报. 2024(05): 1370-1377 .
    5. 韩青,张大伟. 植物蛋白的亚细胞定位观察虚拟仿真实验. 实验科学与技术. 2024(04): 84-89 .
    6. 韦鎔宜,段鹏,李培兰,罗丹,史国民,代吴斌,李凤珍,何涛. 水母雪兔子通气组织形成相关基因SmPAD4的克隆及表达分析. 广西植物. 2024(12): 2265-2278 .
    7. 黄馨田,韩慧杰,李宇琛,刘亚玲,张雅荣,赵彦. 蒙农杂种冰草AcdMYB1基因克隆及表达分析. 草地学报. 2023(08): 2334-2342 .
    8. 李佳楠,高兴泉,李卓,滕小华,黄斌,张继成,唐友. 四种机器学习算法预测大豆蛋白质定位对比研究. 大豆科学. 2022(03): 337-344 .
    9. 苏倩,杜文宣,马琳,夏亚迎,李雪,祁智,庞永珍. 紫花苜蓿MsCIPK2的克隆及功能分析. 中国农业科学. 2022(19): 3697-3709 .

    Other cited types(40)

Catalog

    Article views (1768) PDF downloads (2148) Cited by(49)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return