Advance Search
Shen Xue-Li, Wu Yuan-Mi, Zhu Yi-Xuan, Tong Ling, Hu Qiao-Li, Jiang Wan-Jie, Fan Ya-Qian, Xia Xiao-Fei, Mu Xian-Yun, Zhang Zhi-Xiang. Community niche characteristics and interspecific associations of critically endangered species, Vitis baihuashanensis M. S. Kang et D. Z. Lu[J]. Plant Science Journal, 2020, 38(2): 195-204. DOI: 10.11913/PSJ.2095-0837.2020.20195
Citation: Shen Xue-Li, Wu Yuan-Mi, Zhu Yi-Xuan, Tong Ling, Hu Qiao-Li, Jiang Wan-Jie, Fan Ya-Qian, Xia Xiao-Fei, Mu Xian-Yun, Zhang Zhi-Xiang. Community niche characteristics and interspecific associations of critically endangered species, Vitis baihuashanensis M. S. Kang et D. Z. Lu[J]. Plant Science Journal, 2020, 38(2): 195-204. DOI: 10.11913/PSJ.2095-0837.2020.20195

Community niche characteristics and interspecific associations of critically endangered species, Vitis baihuashanensis M. S. Kang et D. Z. Lu

Funds: 

This work was supported by grants from the Beijing Natural Science Foundation (5192012), Conservation Program of Critically Endangered Wild Plants in Beijing (2019-YSDZWHSDBHC-02-02), and National Training Program of Innovation and Entrepreneurship for Undergraduates (201710022070).

More Information
  • Received Date: July 28, 2019
  • Revised Date: September 22, 2019
  • Available Online: October 31, 2022
  • Published Date: April 27, 2020
  • During the Anthropocene, the Earth’s ecological environment has experienced dramatic changes. With the global biodiversity crisis continuing to intensify, urgent actions are required to protect endangered species and maintain diversity. Grape species Vitis baihuashanensis M. S. Kang et D. Z. Lu is a grade Ⅱ key protected wild plant in Beijing with only two wild individuals. In this study, we conducted a quadrat survey of its natural and artificial communities, quantitatively analyzed the niche characteristics and interspecific associations of the natural community, and compared the natural and artificial community situations to determine the causes of endangerment from an ecological perspective. Based on analysis, the natural community shows positive associations and a positive-negative correlation ratio of less than one, indicating that the community is still developing towards stability. Vegetative growth of Vitis baihuashanensis is greatly limited, not only because the superior arbor and shrub layers intercept considerable light, but also because species with high niche overlap, such as Deutzia parviflora Bge., Rubus crataegifolius Bge., Clematis brevicaudata DC., and Schisandra chinensis (Turcz.) Baill., out-compete for various resources. In contrast, based on the general positive associations and positive-negative correlation ratio greater than one, the artificial community is currently stable which lacks of tall trees and has availability of sufficient light. In addition, Vitis baihuashanensis has non-significant positive correlation with dominant shrubs, such as Sabina chinensis (L.) Ant., and thus competition pressure is relatively small, allowing the plant to achieve reproductive growth. Thus, it is suggested that artificial management of the natural community should be strengthened, including reducing shrub and vine coverage, improving light conditions, and decreasing resource competition with other species to enhance the competitive ability of this species.
  • [1]
    Bar-On YM, Phillips R, Milo R. The biomass distribution on Earth[J]. PNAS, 2018, 115(25):6506-6511.
    [2]
    Vellend M, Baeten L, Becker-Scarpitta A, Boucher-Lalonde V, McCune JL, Messier J, et al. Plant biodiversity change across scales during The Anthropocene[J]. Annu Rev Plant Biol, 2017, 68(1):563-586.
    [3]
    IUCN. IUCN Red List of Threatened species[EB/OL].[2019-07-18]. https://www.iucnredlist.org/search/stats?redListCategory=lc.
    [4]
    Säterberg T, Sellman S, Ebenman B. High frequency of functional extinctions in ecological networks[J]. Nature, 2013, 499(7459):468-470.
    [5]
    Liu J, Diamond J. China's environment in a globalizing world[J]. Nature, 2005, 435(7046):1179.
    [6]
    Sang WG, Ma KP, Axmacher JC. Securing a future for China's wild plant resources[J]. Bioscience, 2011, 61(9):720-725.
    [7]
    Scheele BC, Foster CN, Banks SC, Lindenmayer DB. Niche contractions in declining species:mechanisms and consequences[J]. Trends Ecol Evol, 2017, 32(5):346.
    [8]
    Sánchez-González A, López-Mata L. Plant species richness and diversity along an altitudinal gradient in the Sierra Nevada, Mexico[J]. Divers Distrib, 2005, 11(6):567-575.
    [9]
    徐满厚, 刘敏, 翟大彤, 刘彤. 植物种间联结研究内容与方法评述[J]. 生态学报, 2016, 36(24):8224-8233.

    Xu MH, Liu M, Zhai DT, Liu T. A review of contents and methods used to analyze various aspects of plant interspecific associations[J]. Acta Ecologica Sinica, 2016, 36(24):8224-8233.
    [10]
    刘艳, 郑越月, 敖艳艳. 不同生长基质的苔藓植物优势种生态位与种间联结[J]. 生态学报, 2019, 39(1):286-293.

    Liu Y, Zheng YY, Ao YY. Niche and interspecific association of dominant bryophytes on different substrates[J]. Acta Ecologica Sinica, 2019, 39(1):286-293.
    [11]
    This P, Lacombe T, Thomas MR. Historical origins and genetic diversity of wine grapes[J]. Trends Genet, 2006, 22(9):511-519.
    [12]
    Liu CH, Fan XC, Jiang JF, Guo DL, Sun HS, Zhang Y, et al. Genetic diversity of Chinese wild grape species by SSR and SRAP markers[J]. Biotechnol Biotec Eq, 2012, 26(2):2899-2903.
    [13]
    Liang ZC, Duan SC, Sheng J, Zhu SS, Ni XM, Shao JH, et al. Whole-genome resequencing of 472Vitis accessions for grapevine diversity and demographic history analyses[J]. Nat Commun, 2019, 10(1):1190.
    [14]
    康木生, 路端正. 北京葡萄属一新种[J]. 植物分类学报, 1993, 31(1):70-71.

    Kang MS, Lu DZ. A new species of Vitis from Beijing[J]. Acta Phytotaxonomica Sinica, 1993, 31(1):70-71.
    [15]
    路端正, 梁红平. 北京葡萄属植物研究[J]. 北京农学院学报, 1994, 9(1):78-81.

    Lu DZ, Liang HP. The study of Vitis in Beijing[J]. Journal of Beijing Agricultural College, 1994, 9(1):78-81.
    [16]
    Mu XY, Shen XL, Wu YM, Zhu YX, Dong SB, Xia XF, et al. Plastid phylogenomic study of grape species and its implications for evolutionary study and conservation of Vitis[J]. Phytotaxa, 2018, 364(1):71-80.
    [17]
    张博雅. 自然保护区生态旅游资源分类与评价[D]. 北京:北京林业大学, 2016.
    [18]
    张晓秋. 松山自然保护区生物多样性使用价值评估[D]. 北京:中国林业科学研究院, 2004.
    [19]
    江焕, 张辉, 龙文兴, 方燕山, 符明期, 朱孔新. 金钟藤入侵群落的种间联结及生态位特征[J]. 生物多样性, 2019, 27(4):388-399.

    Jiang H, Zhang H, Long WX, Fang YQ, Fu MQ, Zhu KX. Interspecific associations and niche characteristics of communities invaded by Decalobanthus boisianus[J]. Biodiversity Science, 2019, 27(4):388-399.
    [20]
    李德志, 石强, 臧润国, 王绪平, 盛丽娟, 朱志玲, 王长爱. 物种或种群生态位宽度与生态位重叠的计测模型[J]. 林业科学, 2006, 42(7):95-103.

    Li DZ, Shi Q, Zang RG, Wang XP, Sheng LJ, Zhu ZL, Wang CA. Model for niche breadth and niche overlap of species or populations[J]. Scientia Silvae Sinicae, 2006, 42(7):95-103.
    [21]
    陈玉凯, 杨琦, 莫燕妮, 杨小波, 李东海, 洪小江. 海南岛霸王岭国家重点保护植物的生态位研究[J]. 植物生态学报, 2014, 38(6):576-584.

    Chen YK, Yang Q, Mo YN, Yang XB, Li DH, Hong XJ. A study on the niches of the state's key protected plants in Bawangling, Hainan Island[J]. Chinese Journal of Plant Ecology, 2014, 38(6):576-584.
    [22]
    Su SJ, Liu JF, He ZS, Zheng SQ, Hong W, Xu DW. Ecological species groups and interspecific association of dominant tree species in Daiyun Mountain National Nature Reserve[J]. J Mt Sci-Engl, 2015, 12(3):637-646.
    [23]
    Guisan A, Thuiller W. Predicting species distribution:offering more than simple habitat models[J]. Ecol Lett, 2005, 8(9):993-1009.
    [24]
    Scherrer D, Guisan A. Ecological indicator values reveal missing predictors of species distributions[J]. Sci Rep-UK, 2019, 9(1):3061.
    [25]
    宾宇波, 沙海峰, 任建武, 白琪芳. 百花山葡萄组织培养和快速繁殖[J]. 西北林学院学报, 2013, 28(6):99-102.

    Bing YB, Sha HF, Ren JW, Bai QF. Tissue culture and rapid propagation of Vitis amurensis Rupr. var. dissect[J]. Journal of Northwest Forestry University, 2013, 28(6):99-102.
  • Related Articles

    [1]Sun Linjuan, Liu Taoli, Liu Hai, Yuan Dingyang, Yang Xulei, Xu Yusheng, Chen Siyang, Zeng Jianguang, Huang Yubo, Tan Yanning. Effect of ascorbic acid oxidation inhibition on growth of Oryza sativa L. seedlings under abscisic acid (ABA) treatment[J]. Plant Science Journal, 2024, 42(6): 806-814. DOI: 10.11913/PSJ.2095-0837.23378
    [2]Sun De-Zhi, Han Xiao-Ri, Peng Jing, Fan Fu, Song Gui-Yun, Yang Heng-Shan. Effects of exogenous nitric oxide and salicylic acid on membrane peroxidation and the ascorbate-glutathione cycle in leaves of Lycopersicon esculentum seedlings under NaCl stress[J]. Plant Science Journal, 2018, 36(4): 612-622. DOI: 10.11913/PSJ.2095-0837.2018.40612
    [3]YAN Zhi-Ming, SUN Jin, GUO Shi-Rong, WEI Yue, HU De-Long, WANG Quan-Zhi. Effects of Exogenous Proline on the Ascorbate-Glutathione Cycle in Roots of Cucumis melo Seedlings under Salt Stress[J]. Plant Science Journal, 2014, 32(5): 502-508. DOI: 10.11913/PSJ.2095-0837.2014.50502
    [4]WEI Jin-Chi, YANG Hai-Ling. Functional Divergence of Two Glutathione Peroxidase Genes in Oryza sativa[J]. Plant Science Journal, 2013, 31(1): 64-72. DOI: 10.3724/SP.J.1142.2013.10064
    [5]QIU Zong-Bo, LI Fang-Min, WANG Fang, YUE Ming. Effects of CO2 Laser on Glutathione-dependent Antioxidative System in Wheat Seedling under Drought Stress[J]. Plant Science Journal, 2008, 26(4): 402-406.
    [6]LI Cong-Qiang, LIN Gang, LI Ke-Xiu, SONG Yun-Chun, XIONG Zhi-Yong, HE Guang-Yuan. Cytological Identification on the Interspecific Hybrid of Zea mays and Zea diploperennis[J]. Plant Science Journal, 2006, 24(1): 1-5.
    [7]DONG Gao-Feng, CHEN Yi-Zhu, LI Geng-Guang, HUANG Tao, YANG Cheng-Wei. Xanthophyll Cycle and Non-Radiative Energy Dissipation in Sun and Shade Plants[J]. Plant Science Journal, 2001, 19(2): 128-134.
    [8]Li Minghong, Yu Mingjian, Chen Qichang. ACCUMULATION AND CYCLING OF CALCIUM IN AN EVERGREEN BROAD-LEAVED FOREST DOMINATED BY CYCLOBALANOPSIS GLAUCA IN SE, CHINA[J]. Plant Science Journal, 2000, 18(2): 131-137.
    [9]Zhao Bosheng, Mo Hua. DETOXICATION OF ASCORBIC ACID AND MOLYSITE ON THE ROOT GROWTH OF GARLIC UNDER CADMIUM POLLUTION[J]. Plant Science Journal, 1997, 15(2): 167-172.
    [10]Lin Peng. BIOMASS AND ELEMENT CYCLE OF KANDELIA FOREST, CHINA[J]. Plant Science Journal, 1989, 7(3): 251-257.
  • Cited by

    Periodical cited type(9)

    1. 徐萌,王亚楠,李婷婷,赵新英. 拟南芥根中细胞器特异标记蛋白质的定位观察. 山东农业大学学报(自然科学版). 2025(01): 125-132 .
    2. 朱钰雅,倪雅迪,徐羚欣,肖平,段金廒. 中药蛋白结构与功能研究方法与策略探讨. 中国中药杂志. 2024(07): 1705-1716 .
    3. 陈甘露,颜彦,孟宪伟,付莉莉,邱先进,丁泽红,胡伟. 木薯MebZIP2基因克隆及其功能分析. 福建农业学报. 2024(02): 137-146 .
    4. 代蕊,陈崎,爽爽,张岩,张志强,米福贵. 紫花苜蓿MsJAR1基因克隆及表达分析. 草地学报. 2024(05): 1370-1377 .
    5. 韩青,张大伟. 植物蛋白的亚细胞定位观察虚拟仿真实验. 实验科学与技术. 2024(04): 84-89 .
    6. 韦鎔宜,段鹏,李培兰,罗丹,史国民,代吴斌,李凤珍,何涛. 水母雪兔子通气组织形成相关基因SmPAD4的克隆及表达分析. 广西植物. 2024(12): 2265-2278 .
    7. 黄馨田,韩慧杰,李宇琛,刘亚玲,张雅荣,赵彦. 蒙农杂种冰草AcdMYB1基因克隆及表达分析. 草地学报. 2023(08): 2334-2342 .
    8. 李佳楠,高兴泉,李卓,滕小华,黄斌,张继成,唐友. 四种机器学习算法预测大豆蛋白质定位对比研究. 大豆科学. 2022(03): 337-344 .
    9. 苏倩,杜文宣,马琳,夏亚迎,李雪,祁智,庞永珍. 紫花苜蓿MsCIPK2的克隆及功能分析. 中国农业科学. 2022(19): 3697-3709 .

    Other cited types(40)

Catalog

    Article views PDF downloads Cited by(49)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return