Advance Search
Zheng Chuan, Yang Ying-Zeng, Luo Xiao-Feng, Dai Yu-Jia, Liu Wei-Guo, Yang Wen-Yu, Shu Kai. Current understanding of the roles of phytohormone abscisic acid in the regulation of plant root growth[J]. Plant Science Journal, 2019, 37(5): 690-698. DOI: 10.11913/PSJ.2095-0837.2019.50690
Citation: Zheng Chuan, Yang Ying-Zeng, Luo Xiao-Feng, Dai Yu-Jia, Liu Wei-Guo, Yang Wen-Yu, Shu Kai. Current understanding of the roles of phytohormone abscisic acid in the regulation of plant root growth[J]. Plant Science Journal, 2019, 37(5): 690-698. DOI: 10.11913/PSJ.2095-0837.2019.50690

Current understanding of the roles of phytohormone abscisic acid in the regulation of plant root growth

Funds: 

This work was supported by grants from the National Natural Science Foundation of China (31701064, 31872804) and National Key Research and Development Project (2017YFD0201300).

More Information
  • Received Date: March 27, 2019
  • Available Online: October 31, 2022
  • Published Date: October 27, 2019
  • Abscisic acid (ABA) is an important plant phytohormone and plays a key role in the regulation of seed development, dormancy, and germination, plant growth and flowering inhibition, and abiotic stress response pathways. ABA also interacts with other plant hormones, such as auxin and ethylene, to precisely regulate root growth, including that of preprimary roots, lateral roots, and root hairs. In this updated review, we summarize the molecular mechanisms by which ABA regulates plant root growth and development, focusing on the model plant Arabidopsis thaliana (L.) Heynh. We also discuss the proposed mechanism of ABA interaction with other plant hormones (such as GA) to regulate root growth, especially under abiotic stress conditions. Additionally, the future research directions in this field are discussed.
  • [1]
    Chen X, Yao Q, Gao X, Jiang C, Harberd N, Fu X. Shoot-to-root mobile transcription factor HY5 coordinates plant carbon and nitrogen acquisition[J]. Curr Biol, 2016, 26(5):640-646.
    [2]
    刘倩, 高娅妮, 柳旭, 周文楠, 王佺珍. 混合盐碱胁迫下接种丛枝菌根真菌和根瘤菌对紫花苜蓿生长的影响[J]. 生态学报, 2018, 38(17):6143-6155.

    Liu Q, Gao YN, Liu X, Zhou WN, Wang QZ. Effects of inoculation with arbuscular mycorrhizal fungi and rhizobia on growth of Medicago sativa under saline-alkaline stress[J]. Acta Ecologica Sinica, 2018, 38(17):6143-6155.
    [3]
    Paul K, Christine SD. The origin and early evolution of roots[J]. Plant Physiol, 2014, 166(2):570-580.
    [4]
    Laskowski M, Ten Tusscher KH. Periodic lateral root pri-ming:what makes it tick?[J]. Plant Cell, 2017, 29(3):432-444.
    [5]
    Steffens B, Rasmussen A. The physiology of adventitious roots[J]. Plant Physiol, 2016, 170(2):603-617.
    [6]
    莫亿伟, 李夏杰, 王海, 陈泽恺, 杨国, 王尉. IAA对水稻根毛形成与水通道蛋白基因表达关系的研究[J]. 中国农业科学, 2015, 48(21):4227-4239.

    Mo YW, Li XJ, Wang H, Chen ZK, Yang G, Wang W. Effect of auxin treatment on root hair formation and aquaporins genes expression in root hair of rice[J]. Scientia Agricultura Sinica, 2015, 48(21):4227-4239.
    [7]
    Dolan L. Root hair development in grasses and cereals (Poaceae)[J]. Curr Opin Genet Dev, 2017, 45:76-81.
    [8]
    Guy W, Sparks EE, Benfey PN. Genes and networks re-gulating root anatomy and architecture[J]. New Phytol, 2015, 208(1):26-38.
    [9]
    Bellini C, Pacurar DI, Perrone I. Adventitious roots and la-teral roots:similarities and differences[J]. Annu Rev Plant Biol, 2014, 65(65):639-666.
    [10]
    Ma Y, Cao J, He J, Chen Q, Li X, Yang Y. Molecular mechanism for the regulation of aba homeostasis during plant development and stress responses[J]. Int J Mol Sci, 2018, 19(11).
    [11]
    Yoshida T, Mogami J, Yamaguchi-Shinozaki K. Omics approaches toward defining the comprehensive abscisic acid signaling network in plants[J]. Plant Cell Physiol, 2015, 56(6):1043-1052.
    [12]
    Shu K, Chen Q, Wu Y, Liu R, Zhang H, Wang P, et al. ABI4 mediates antagonistic effects of abscisic acid and gibberellins at transcript and protein levels[J]. Plant J, 2016, 85(3):348-361.
    [13]
    Shu K, Zhang H, Wang S, Chen M, Wu Y, Tang S, et al. ABI4 regulates primary seed dormancy by regulating the biogenesis of abscisic acid and gibberellins in Arabidopsis[J]. Plos Genet, 2013, 9(6):e1003577.
    [14]
    Shu K, Liu XD, Xie Q, He ZH. Two faces of one seed:hormonal regulation of dormancy and germination[J]. Mol Plant, 2016, 9(1):34-45.
    [15]
    Shu K, Chen Q, Wu Y, Liu R, Zhang H, Wang S, et al. ABSCISIC ACID-INSENSITIVE 4 negatively regulates flowering through directly promoting Arabidopsis FLOWERING LOCUS C transcription[J]. J Exp Bot, 2016, 67(1):195-205.
    [16]
    Rowe JH, Topping JF, Liu J, Lindsey K. Abscisic acid regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin[J]. New Phytol, 2016, 211(1):225-239.
    [17]
    Thole JM, Beisner ER, Liu J, Venkova SV, Strader LC. Abscisic acid regulates root elongation through the activities of auxin and ethylene in Arabidopsis thaliana[J]. G3:Genes, Genomes, Genet, 2014, 4(7):1259-1274.
    [18]
    Tian H, Guo H, Dai X, Cheng Y, Zheng K, Wang X, et al. An aba down-regulated bHLH transcription repressor gene, bHLH129 regulates root elongation and aba response when overexpressed in Arabidopsis[J]. Sci Rep, 2015, 5(17587):17587.
    [19]
    Luo X, Chen Z, Gao J, Gong Z. Abscisic acid inhibits root growth in Arabidopsis through ethylene biosynthesis[J]. Plant J, 2014, 79(1):44-55.
    [20]
    Rogers ED, Benfey PN. Regulation of plant root system architecture:implications for crop advancement[J]. Curr Opin Biotechnol, 2015, 32(32C):93-98.
    [21]
    Lee Y, Lee WS, Kim SH. Hormonal regulation of stem cell maintenance in roots[J]. J Exp Bot, 2013, 64(5):1153.
    [22]
    Zhou W, Lozano-Torres JL, Blilou I, Zhang X, Zhai Q, Smant G, et al. A jasmonate signaling network activates root stem cells and promotes regeneration[J]. Cell, 2019, 177(4):942-956.
    [23]
    Yu Q, Tian H, Yue K, Liu J, Zhang B, Li X, et al. A ploop NTPase regulates quiescent center cell division and distal stem cell identity through the regulation of ros homeostasis in Arabidopsis root[J]. Plos Genet, 2016, 12(9):e1006175.
    [24]
    Scheres B, Krizek BA. Coordination of growth in root and shoot apices by AIL/PLT transcription factors[J]. Curr Opin Plant Biol, 2018, 41:95-101.
    [25]
    Di Mambro R, De Ruvo M, Pacifici E, Salvi E, Sozzani R, Benfey PN, et al. Auxin minimum triggers the developmental switch from cell division to cell differentiation in the Arabidopsis root[J]. Proc Natl Acad Sci U S A, 2017, 114(36):e7641-e7649.
    [26]
    Naramoto S. Polar transport in plants mediated by membrane transporters:focus on mechanisms of polar auxin transport[J]. Curr Opin Plant Biol, 2017, 40:8-14.
    [27]
    Doron SI, Dudy BZ. ABI4 mediates abscisic acid and cytokinin inhibition of lateral root formation by reducing polar auxin transport in Arabidopsis[J]. Plant Cell, 2011, 22(5):3560-3573.
    [28]
    Jan P, Jirí F. Auxin transport routes in plant development[J]. Development, 2009, 136(16):2675-2688.
    [29]
    Doncheva S, Amenós M, Poschenrieder C, Barceló J. Root cell patterning:a primary target for aluminium toxicity in maize[J]. J Exp Bot, 2005, 56(414):1213-1220.
    [30]
    Petricka JJ, Winter CM, Benfey PN. Control of Arabidopsis root development[J]. Annu Rev Plant Biol, 2012, 63(1):563-590.
    [31]
    Schaller GE, Street IH, Kieber JJ. Cytokinin and the cell cycle[J]. Curr Opin Plant Biol, 2014, 21(21C):7-15.
    [32]
    Hemerly A, Engler Jde A, Bergounioux C, Van Montagu M, Engler G, Inze D, et al. Dominant negative mutants of the Cdc2 kinase uncouple cell division from iterative plant development[J]. EMBO J, 1995, 14(16):3925-3936.
    [33]
    Boudolf V, Barrôco R, Engler Jde A, Verkest A, Beeckman T, Naudts M, et al. B1-type cyclin-dependent kinases are essential for the formation of stomatal complexes in Arabidopsis thaliana[J]. Plant Cell, 2004, 16(4):945-955.
    [34]
    Komaki S, Sugimoto K. Control of the plant cell cycle by developmental and environmental cues[J]. Plant Cell Physiol, 2012, 53(6):953-964.
    [35]
    Guanfang W, Hongzhi K, Yujin S, Xiaohong Z, Wei Z, Naomi A, et al. Genome-wide analysis of the cyclin family in Arabidopsis and comparative phylogenetic analysis of plant cyclin-like proteins[J]. Plant Physiol, 2004, 135(2):1084-1099.
    [36]
    Vieira P, De Almeida Engler J. Plant cyclin-dependent kinase inhibitors of the KRP family:potent inhibitors of root-knot nematode feeding sites in plant roots[J]. Front Plant Sci, 2017, 8:1514.
    [37]
    Kristiina H, Elodie B, Steffen V, Janice de AE, Dirk I, Tom B. Auxin-mediated cell cycle activation during early lateral root initiation[J]. Plant Cell, 2002, 14(10):2339-2351.
    [38]
    Cruz-Ramírez A1, Díaz-Triviño S, Blilou I, Grieneisen VA, Sozzani R, Zamioudis C, et al. A bistable circuit involving SCARECROW-RETINOBLASTOMA integrates cues to inform asymmetric stem cell division[J]. Cell, 2012, 150(5):1002-1015.
    [39]
    袁冰剑, 张森磊, 曹萌萌, 王志娟, 李霞. 脱落酸通过影响生长素合成及分布抑制拟南芥主根伸长[J]. 中国生态农业学报, 2014, 22(11):1341-1347.

    Yuan BJ, Zhang SL, Cao MM, Wang ZJ, Li X. ABA mo-dulates root growth through regulating auxin in Arabidopsis thaliana[J]. Chinese Journal of Eco-Agriculture, 2014, 22(11):1341-1347.
    [40]
    Wang L, Hua D, He J, Duan Y, Chen Z, Hong X, et al. Auxin Response Factor2(ARF2) and its regulated homeodomain gene HB33 mediate abscisic acid response in Arabidopsis[J]. PLoS Genet, 2011, 7(7):e1002172.
    [41]
    Promchuea S, Zhu Y, Chen Z, Jing Z, Gong Z. ARF2 coordinates with PLETHORAs and PINs to orchestrate ABA-mediated root meristem activity in Arabidopsis[J]. J Integr Plant Biol, 2017, 59(1):30-43.
    [42]
    Wang Z, Mao JL, Zhao YJ, Li CY, Xiang CB. L-cysteine inhibits root elongation through auxin/PLETHORA and SCR/SHR pathway in Arabidopsis thaliana[J]. J Integr Plant Biol, 2015, 57(2):186-197.
    [43]
    Larsen PB. Mechanisms of ethylene biosynthesis and response in plants[J]. Essays Biochem, 2015, 58(1):61-70.
    [44]
    Gazzarrini S, Tsai AY. Hormone cross-talk during seed germination[J]. Essays Biochem, 2015, 58:151-164.
    [45]
    Mamoona K, Wilfried R, Brigitte P. The role of hormones in the aging of plants-a mini-review[J]. Gerontology, 2013, 60(1):49-55.
    [46]
    Argueso CT, Hansen M, Kieber JJ. Regulation of ethylene biosynthesis[J]. J Plant Growth Regul, 2007, 26(2):92-105.
    [47]
    Swarup R, Parry G, Graham N, Allen T, Bennett M. Auxin cross-talk:integration of signalling pathways to control plant development[J]. Plant Mol Biol, 2002, 49(3-4):411-426.
    [48]
    Kamil RZ, Karin L, Steffen V, Radka P, Tom B, Jirí F, et al. Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution[J]. Plant Cell, 2007, 19(7):2197-2212.
    [49]
    Yoshida H, Nagata M, Saito K, Wang KL, Ecker JR. Arabidopsis ETO1 specifically interacts with and negatively regulates type 21-aminocyclopropane-1-carboxylate synthases[J]. Bmc Plant Biol, 2005, 5(1):14.
    [50]
    Shu-Hua C, Willmann MR, Huei-Chi C, Jen S. Calcium signaling through protein kinases. The Arabidopsis cal-cium-dependent protein kinase gene family[J]. Plant Physiol, 2002, 129(2):469.
    [51]
    Strader LC, Chen GL, Bartel B. Ethylene directs auxin to control root cell expansion[J]. Plant J, 2010, 64(5):874-884.
    [52]
    Yang L, Wang S, Sun L, Ruan M, Li S, He R, et al. Involvement of G6PD5 in ABA response during seed germination and root growth in Arabidopsis[J]. BMC Plant Biol, 2019, 19(1):44.
    [53]
    Sakaoka S, Mabuchi K, Morikami A, Tsukagoshi H. MYB30 regulates root cell elongation under abscisic acid signaling[J]. Commun Integr Biol, 2018, 11(4):e1526604.
    [54]
    Mabuchi K, Maki H, Itaya T, Suzuki T, Nomoto M, Sakaoka S, et al. MYB30 links ROS signaling, root cell elongation, and plant immune responses[J]. Proc Natl Acad Sci U S A, 2018, 115(20):E4710-E4719.
    [55]
    Ive DS, White PJ, A Glyn B, Lionel D, Boris P, Ilda C, et al. Analyzing lateral root development:how to move forward[J]. Plant Cell, 2012, 24(1):15-20.
    [56]
    Péret B, Rybel BD, Casimiro I, Benková E, Swarup R, Laplaze L, et al. Arabidopsis lateral root development:an emerging story[J]. Trends Plant Sci, 2009, 14(7):399-408.
    [57]
    Celenza JL Jr, Grisafi PL, Fink GR. A pathway for lateral root formation in Arabidopsis thaliana[J]. Genes Dev, 1995, 9(17):2131-2142.
    [58]
    Smet LD, Signora L, Beeckman T, Foyer CH, Zhang H. An abscisic acid-sensitive checkpoint in lateral root deve-lopment of Arabidopsis[J]. Plant J, 2010, 33(3):543-555.
    [59]
    Suzuki M, Kao CY, Cocciolone S, Mccarty DR. Maize VP1 complements Arabidopsis abi3 and confers a novel ABA/auxin interaction in roots[J]. Plant J, 2001, 28(4):409-418.
    [60]
    Brady SM, Sarkar SF, Bonetta D, McCourt P. The ABSCISIC ACID INSENSITIVE 3 (ABI3) gene is modulated by farnesylation and is involved in auxin signaling and lateral root development in Arabidopsis[J]. Plant J, 2010, 34(1):67-75.
    [61]
    Jeon E, Kang NY, Cho C, Joon Seo P, Chung Suh M, Kim J. LBD14/ASL17 positively regulates lateral root formation and is involved in aba response for root architecture in Arabidopsis[J]. Plant Cell Physiol, 2017, 58(12):2190-2201.
    [62]
    Salazar-Henao JE, Vélez-Bermúdez IC, Schmidt W. The regulation and plasticity of root hair patterning and morphogenesis[J]. Development, 2016, 143(11):1848-1858.
    [63]
    Jang G, Yi K, Pires ND, Menand B, Dolan L. RSL genes are sufficient for rhizoid system development in early diverging land plants[J]. Development, 2011, 138(11):2273-2281.
    [64]
    Rymen B, Kawamura A, Schãfer S, Breuer C, Iwase A, Shibata M, et al. ABA suppresses root hair growth via the OBP4 transcriptional regulator[J]. Plant Physiol, 2017, 173(3):1750-1762.
    [65]
    Wang T, Li C, Wu Z, Jia Y, Wang H, Sun S, et al. Abscisic acid regulates auxin homeostasis in rice root tips to promote root hair elongation[J]. Front Plant Sci, 2017, 8:1121.
    [66]
    Wang L, Dong J, Gao Z, Liu D. The Arabidopsis gene HYPERSENSITIVE TO PHOSPHATE STARVATION 3 encodes[WTXFX] ETHYLENE OVERPRODUCTION 1[WTXFZ] [J]. Plant Cell Physiol, 2012, 53(6):1093-1105.
    [67]
    Li W, Ma M, Feng Y, Li H, Wang Y, Ma Y, et al. EIN2-directed translational regulation of ethylene signaling in Arabidopsis[J]. Cell, 2015, 163(3):670-683.
    [68]
    Shu K, Meng YJ, Shuai HW, Liu WG, Du JB, Liu J, et al. Dormancy and germination:how does the crop seed decide?[J]. Plant Biol, 2015, 17(6):1104-1112.
    [69]
    Shu K, Zhou W, Chen F, Luo X, Yang W. Abscisic acid and gibberellins antagonistically mediate plant development and abiotic stress responses[J]. Front Plant Sci, 2018, 9:416.
    [70]
    Shu K, Zhou W, Yang W. APETALA 2-domain-containing transcription factors:focusing on abscisic acid and gibberellins antagonism[J]. New Phytol, 2018, 217(3):977-983.
    [71]
    Lim CW, Baek W, Jung J, Kim JH, Lee SC. Function of aba in stomatal defense against biotic and drought stresses[J]. Int J Mol Sci, 2015, 16(7):15251-15270.
    [72]
    Ramirez L, Negri P, Sturla L, Guida L, Vigliarolo T, Maggi M, et al. Abscisic acid enhances cold tolerance in honeybee larvae[J]. Proc Biol Sci, 2017, 284(1852).
    [73]
    Agurla S, Gahir S, Munemasa S, Murata Y, Raghavendra AS. Mechanism of stomatal closure in plants exposed to drought and cold stress[J]. Adv Exp Med Biol, 2018, 1081:215-232.
    [74]
    Fonouni-Farde C, Diet A, Frugier F. Root development and endosymbioses:DELLAs lead the orchestra[J]. Trends Plant Sci, 2016, 21(11):898-900.
    [75]
    Li G, Zhu C, Gan L, Ng D, Xia K. GA(3) enhances root responsiveness to exogenous IAA by modulating auxin transport and signalling in Arabidopsis[J]. Plant Cell Rep, 2015, 34(3):483-494.
    [76]
    Shu K, Yang W. E3 ubiquitin ligases:ubiquitous actors in plant development and abiotic stress responses[J]. Plant Cell Physiol, 2017, 58(9):1461-1476.
  • Related Articles

    [1]Sun Linjuan, Liu Taoli, Liu Hai, Yuan Dingyang, Yang Xulei, Xu Yusheng, Chen Siyang, Zeng Jianguang, Huang Yubo, Tan Yanning. Effect of ascorbic acid oxidation inhibition on growth of Oryza sativa L. seedlings under abscisic acid (ABA) treatment[J]. Plant Science Journal, 2024, 42(6): 806-814. DOI: 10.11913/PSJ.2095-0837.23378
    [2]Sun De-Zhi, Han Xiao-Ri, Peng Jing, Fan Fu, Song Gui-Yun, Yang Heng-Shan. Effects of exogenous nitric oxide and salicylic acid on membrane peroxidation and the ascorbate-glutathione cycle in leaves of Lycopersicon esculentum seedlings under NaCl stress[J]. Plant Science Journal, 2018, 36(4): 612-622. DOI: 10.11913/PSJ.2095-0837.2018.40612
    [3]YAN Zhi-Ming, SUN Jin, GUO Shi-Rong, WEI Yue, HU De-Long, WANG Quan-Zhi. Effects of Exogenous Proline on the Ascorbate-Glutathione Cycle in Roots of Cucumis melo Seedlings under Salt Stress[J]. Plant Science Journal, 2014, 32(5): 502-508. DOI: 10.11913/PSJ.2095-0837.2014.50502
    [4]WEI Jin-Chi, YANG Hai-Ling. Functional Divergence of Two Glutathione Peroxidase Genes in Oryza sativa[J]. Plant Science Journal, 2013, 31(1): 64-72. DOI: 10.3724/SP.J.1142.2013.10064
    [5]QIU Zong-Bo, LI Fang-Min, WANG Fang, YUE Ming. Effects of CO2 Laser on Glutathione-dependent Antioxidative System in Wheat Seedling under Drought Stress[J]. Plant Science Journal, 2008, 26(4): 402-406.
    [6]LI Cong-Qiang, LIN Gang, LI Ke-Xiu, SONG Yun-Chun, XIONG Zhi-Yong, HE Guang-Yuan. Cytological Identification on the Interspecific Hybrid of Zea mays and Zea diploperennis[J]. Plant Science Journal, 2006, 24(1): 1-5.
    [7]DONG Gao-Feng, CHEN Yi-Zhu, LI Geng-Guang, HUANG Tao, YANG Cheng-Wei. Xanthophyll Cycle and Non-Radiative Energy Dissipation in Sun and Shade Plants[J]. Plant Science Journal, 2001, 19(2): 128-134.
    [8]Li Minghong, Yu Mingjian, Chen Qichang. ACCUMULATION AND CYCLING OF CALCIUM IN AN EVERGREEN BROAD-LEAVED FOREST DOMINATED BY CYCLOBALANOPSIS GLAUCA IN SE, CHINA[J]. Plant Science Journal, 2000, 18(2): 131-137.
    [9]Zhao Bosheng, Mo Hua. DETOXICATION OF ASCORBIC ACID AND MOLYSITE ON THE ROOT GROWTH OF GARLIC UNDER CADMIUM POLLUTION[J]. Plant Science Journal, 1997, 15(2): 167-172.
    [10]Lin Peng. BIOMASS AND ELEMENT CYCLE OF KANDELIA FOREST, CHINA[J]. Plant Science Journal, 1989, 7(3): 251-257.
  • Cited by

    Periodical cited type(9)

    1. 徐萌,王亚楠,李婷婷,赵新英. 拟南芥根中细胞器特异标记蛋白质的定位观察. 山东农业大学学报(自然科学版). 2025(01): 125-132 .
    2. 朱钰雅,倪雅迪,徐羚欣,肖平,段金廒. 中药蛋白结构与功能研究方法与策略探讨. 中国中药杂志. 2024(07): 1705-1716 .
    3. 陈甘露,颜彦,孟宪伟,付莉莉,邱先进,丁泽红,胡伟. 木薯MebZIP2基因克隆及其功能分析. 福建农业学报. 2024(02): 137-146 .
    4. 代蕊,陈崎,爽爽,张岩,张志强,米福贵. 紫花苜蓿MsJAR1基因克隆及表达分析. 草地学报. 2024(05): 1370-1377 .
    5. 韩青,张大伟. 植物蛋白的亚细胞定位观察虚拟仿真实验. 实验科学与技术. 2024(04): 84-89 .
    6. 韦鎔宜,段鹏,李培兰,罗丹,史国民,代吴斌,李凤珍,何涛. 水母雪兔子通气组织形成相关基因SmPAD4的克隆及表达分析. 广西植物. 2024(12): 2265-2278 .
    7. 黄馨田,韩慧杰,李宇琛,刘亚玲,张雅荣,赵彦. 蒙农杂种冰草AcdMYB1基因克隆及表达分析. 草地学报. 2023(08): 2334-2342 .
    8. 李佳楠,高兴泉,李卓,滕小华,黄斌,张继成,唐友. 四种机器学习算法预测大豆蛋白质定位对比研究. 大豆科学. 2022(03): 337-344 .
    9. 苏倩,杜文宣,马琳,夏亚迎,李雪,祁智,庞永珍. 紫花苜蓿MsCIPK2的克隆及功能分析. 中国农业科学. 2022(19): 3697-3709 .

    Other cited types(40)

Catalog

    Article views (2470) PDF downloads (1036) Cited by(49)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return