Advance Search
Han Lu, Chen Jia-Li, Wang Jia-Qiang, Wang Hai-Zhen, Lü Rui-Heng, Kang Jia-Peng. Species composition, community structure, and floristic characteristics of desert riparian forest community along the mainstream of Tarim River[J]. Plant Science Journal, 2019, 37(3): 324-336. DOI: 10.11913/PSJ.2095-0837.2019.30324
Citation: Han Lu, Chen Jia-Li, Wang Jia-Qiang, Wang Hai-Zhen, Lü Rui-Heng, Kang Jia-Peng. Species composition, community structure, and floristic characteristics of desert riparian forest community along the mainstream of Tarim River[J]. Plant Science Journal, 2019, 37(3): 324-336. DOI: 10.11913/PSJ.2095-0837.2019.30324

Species composition, community structure, and floristic characteristics of desert riparian forest community along the mainstream of Tarim River

Funds: 

This work was supported by grants from the National Natural Science Foundation of China (31860165, 31560182, 31060066).

More Information
  • Received Date: October 28, 2018
  • Revised Date: December 11, 2018
  • Available Online: October 31, 2022
  • Published Date: June 27, 2019
  • Desert riparian forest is a typical temperate deciduous broad-leaved secondary forest and is mainly distributed in the Tarim Basin. To better understand the mechanisms of community dynamics and species coexistence of this forest type, six 1-hm2 plots were established and divided into 150 subplots. We analyzed species composition (e.g., importance value, abundance), community structure (e.g., vertical structure, size-class structure), spatial distribution of woody plants, and floristic composition. Results indicated that community structure of the desert riparian forest was simple and species diversity was low, with 16 species, belonging to 15 genera and 12 families identified. Salicaceae had the highest importance value (28.97%) and was the dominant family in the community. When the sampling area was larger than 0.04 hm2, 87.5% of species were counted. Rare and occasional species accounted for 12.5% of all species, respectively. Floristic composition was poor, with single species, genus, and temperate components being dominant, although ancient Mediterranean components also occupied an important position, with typical temperate flora. We counted 2497 living free-standing trees in the plots. Species abundance, basal area, and importance values showed that Populus pruinosa was the obviously dominant species. The number of families, genera, and species decreased with increasing height class, and the vertical structure was composed of canopy, shrub, and herb layers, indicating apparent vertical stratification in this forest. The average DBH of all trees was 15.57 cm, and DBH size and height classes showed skewed normal distributions, with few individuals with a height lower than 2 m, indicating weak regeneration across the community. The DBH structures of P. pruinosa and P. euphratica generally were unimodal; in particular, P. euphratica lacked small DBH trees and P. pruinosa had extremely high mortality during development from seedling to young tree, thus suggesting declining populations for these two species. The spatial distribution patterns of the two dominant species were clustered and varied with diameter in different habitats. In addition, the two dominant species were spatially mutually exclusive and occupied different habitats, suggesting that interspecific competition and habitat heterogeneity may be responsible for the species coexistence and spatial distribution of dominant species.
  • [1]
    Tilman D, Reich PB, Knops JMH. Biodiversity and ecosystem stability in a decade long grassland experiment[J]. Nature, 2006, 441(7093):629-632.
    [2]
    刘海丰, 李亮, 桑卫国. 东灵山暖温带落叶阔叶次生林动态监测样地:物种组成与群落结构[J]. 生物多样性, 2011, 19(2):232-242.

    Liu HF, Li L, Sang WG. Species composition and community structure of the Donglingshan forest dynamic plot in a warm temperate deciduous broad-leaved secondary forest, China[J]. Biodiversity Science, 2011, 19(2):232-242.
    [3]
    王家鸣, 许涵, 李意德, 林明献, 周璋, 骆土寿, 陈德祥. 地形异质性对尖峰岭热带山地雨林木本植物群落结构及多样性的影响[J]. 林业科学, 2018, 54(1):1-11.

    Wang JM, Xu H, Li YD, Lin MX, Zhou Z, Luo TS, Chen DX. Effects of topographic heterogeneity on community structure and diversity of woody plants in Jianfengling tropical montane rainforest[J]. Scientia Silvae Sinicae, 2018, 54(1):1-11.
    [4]
    郝占庆, 张健, 李步杭, 叶吉, 王绪高, 姚晓琳. 长白山次生杨桦林样地:物种组成与群落结构[J]. 植物生态学报, 2008, 32(2):251-261.

    Hao ZQ, Zhang J, Li BH, Ye J, Wang XG, Yao XL. Natural secondary poplar-birch forest in Changbai Mountain:species composition and community structure[J]. Journal of Plant Ecology, 2008, 32(2):251-261.
    [5]
    赵丽娟, 项文化, 李家湘, 邓湘雯, 刘聪. 中亚热带石栎-青冈群落物种组成、结构及区系特征[J]. 林业科学, 2013, 49(12):11-17.

    Zhao LJ, Xiang WH, Li JX, Deny XW, Liu C. Floristic composition, structure and phytogeographic characteristics in a Lithocarpus glaber-Cyclobalanopsis glauca forest community in the subtropical region[J]. Scientia Silvae Sinicae, 2013, 49(2):11-17.
    [6]
    温韩东, 林露湘, 杨洁, 胡跃华, 曹敏, 刘玉洪, 鲁志云, 谢有能. 云南哀牢山中山湿性常绿阔叶林20 hm2动态样地的物种组成与群落结构[J]. 植物生态学报, 2018, 42(4):419-429.

    Wen HD, Lin LX, Yang J. Hu YH, Cao M, Liu YH, Lu ZY, Xie YN. Species composition and community structure of a 20 hm2 plot of mid-mountain moist evergreen broadleaved forest on the Mts. Ailaoshan, Yunnan Province, China[J]. Chinese Journal of Plant Ecology, 2018, 42(4):419-429.
    [7]
    吴征镒. 中国种子植物属的分布区类型[J]. 云南植物研究, 1991,13(增刊Ⅳ):1-139.

    Wu ZY. The areal-types of Chinese genera of seed plants[J]. Acta Botanica Yunnanica, 1991, 13(Suppl. Ⅳ):1-139.
    [8]
    吴征镒, 周浙昆, 李德铢, 彭华, 孙航. 世界种子植物科的分布区类型系统[J]. 云南植物研究, 2003, 25(3):245-257.

    Wu ZY, Zhou ZK, Li DZ, Peng H, Sun H. The areal-types of the world families of seed plants[J]. Acta Botanica Yunnanica, 2003, 25(3):245-257.
    [9]
    韩路, 王海珍, 牛建龙, 王家强, 柳维扬. 荒漠河岸林胡杨群落特征对地下水位梯度的响应[J]. 生态学报, 2017, 37(20):6836-6846.

    Han L,Wang HZ, Niu JL, Wang JQ, Liu WY. Response of Populus euphratica communities in a desert riparian forest to the groundwater level gradient in the Tarim Basin[J]. Acta Ecologica Sinica, 2017, 37(20):6836-6846.
    [10]
    白玉锋, 徐海量, 张沛, 张广朋, 凌红波. 塔里木河下游荒漠植物多样性、地上生物量与地下水埋深的关系[J]. 中国沙漠, 2017, 37(4):724-732.

    Bai YF, Xu HL, Zhang P, Zhang GP, Ling HB. Relation of desert vegetation species diversity and aboveground biomass to groundwater depth in the lower reaches of Tarim River[J]. Journal of Desert Research, 2017, 37(4):724-732.
    [11]
    于军, 王海珍, 陈加利, 韩路. 塔里木河流域荒漠河岸林胡杨群落的空间格局研究[J]. 中国沙漠, 2011, 31(4):913-918.

    Yu J, Wang HZ, Chen JL, Han L. Spatial pattern of Populus euphratica community of desert riparian forest in Tarim River basin[J]. Journal of Desert Research, 2011, 31(4):913-918.
    [12]
    赵振勇, 张科, 卢磊, 周生斌, 张慧. 塔里木河中游洪水漫溢区荒漠河岸林实生苗更新[J]. 生态学报, 2011, 31(2):3322-3329.

    Zhao ZY, Zhang K, Lu L, Zhou SB, Zhang H. Seedling recruitment in desert riparian forest following river flooding in the middle reaches of the Tarim River[J]. Acta Ecologica Sinica, 2011, 31(2):3322-3329.
    [13]
    胡理乐, 闫伯前, 江明喜, 朱教君. 毛柄小勾儿茶伴生群落种类组成及多样性研究[J]. 西北植物学报, 2007, 27(3):594-600.

    Hu LL, Yan BQ, Jiang MX, Zhu JJ. The diversity of plant communities with endangered plant, Berchemiella wilsonii var. pubipetiolata[J]. Acta Botanica Boreali-Occidentalia Sinica, 2007, 27(3):594-600.
    [14]
    马克平, 黄建辉, 于顺利, 陈灵芝. 北京东灵山地区植物群落多样性的研究:Ⅱ.丰富度、均匀度和物种多样性指数[J]. 生态学报, 1995, 15(3):268-277.

    Ma KP, Huang JH, Yu SL, Chen LZ. Plant community diversity in Dongling Mountain, Beijing, China:Ⅱ. species richness, evenness and species diversities[J]. Acta Ecologica Sinica,1995, 15(3):268-277.
    [15]
    张金屯. 植被数量生态学方法[M]. 北京:中国科学技术出版社, 1995.
    [16]
    韩路, 王家强, 王海珍, 牛建龙, 于军. 塔里木荒漠绿洲过渡带主要种群生态位与空间格局分析[J]. 植物科学学报, 2016, 34(3):325-333.

    Han L, Wang JQ, Wang HZ, Niu JL, Yu J. Niche and spatial distribution pattern analysis of main populations at the ecotone of Tarim Desert-Oasis[J]. Plant Science Journal, 2016, 34(3):325-333.
    [17]
    He FL, Legendre P, LaFrankie JV. Distribution patterns of tree species in a Malaysian tropical rain forest[J]. J Veg Sci, 1997, 8(1):105-114.
    [18]
    潘晓玲. 新疆种子植物科的区系地理成分分析[J]. 植物研究, 1997, 17(4):397-402.

    Pan XL. Floristic analysis of seed plant families in Xinjinag[J]. Bulletin of Botanical Research,1997, 17(4):397-402.
    [19]
    潘晓玲. 新疆种子植物属的区系地理成分分析[J]. 植物研究, 1999, 19(3):249-259.

    Pan XL. Floristic analysis of seed plant genera in Xinjinag[J]. Bulletin of Botanical Research, 1999, 19(3):249-259.
    [20]
    Wang DP, Ji SY, Chen FP, Xing FW, Peng SL. Diversity and relationship with succession of naturally regenerated southern subtropical forests in Shenzhen, China and its comparison with the zonal climax of Hong Kong[J]. Forest Ecol Manag, 2006, 222(1-3):384-390.
    [21]
    宋永昌. 植被生态学[M]. 上海:华东师范大学出版社, 2001:59.
  • Related Articles

    [1]Sun Linjuan, Liu Taoli, Liu Hai, Yuan Dingyang, Yang Xulei, Xu Yusheng, Chen Siyang, Zeng Jianguang, Huang Yubo, Tan Yanning. Effect of ascorbic acid oxidation inhibition on growth of Oryza sativa L. seedlings under abscisic acid (ABA) treatment[J]. Plant Science Journal, 2024, 42(6): 806-814. DOI: 10.11913/PSJ.2095-0837.23378
    [2]Sun De-Zhi, Han Xiao-Ri, Peng Jing, Fan Fu, Song Gui-Yun, Yang Heng-Shan. Effects of exogenous nitric oxide and salicylic acid on membrane peroxidation and the ascorbate-glutathione cycle in leaves of Lycopersicon esculentum seedlings under NaCl stress[J]. Plant Science Journal, 2018, 36(4): 612-622. DOI: 10.11913/PSJ.2095-0837.2018.40612
    [3]YAN Zhi-Ming, SUN Jin, GUO Shi-Rong, WEI Yue, HU De-Long, WANG Quan-Zhi. Effects of Exogenous Proline on the Ascorbate-Glutathione Cycle in Roots of Cucumis melo Seedlings under Salt Stress[J]. Plant Science Journal, 2014, 32(5): 502-508. DOI: 10.11913/PSJ.2095-0837.2014.50502
    [4]WEI Jin-Chi, YANG Hai-Ling. Functional Divergence of Two Glutathione Peroxidase Genes in Oryza sativa[J]. Plant Science Journal, 2013, 31(1): 64-72. DOI: 10.3724/SP.J.1142.2013.10064
    [5]QIU Zong-Bo, LI Fang-Min, WANG Fang, YUE Ming. Effects of CO2 Laser on Glutathione-dependent Antioxidative System in Wheat Seedling under Drought Stress[J]. Plant Science Journal, 2008, 26(4): 402-406.
    [6]LI Cong-Qiang, LIN Gang, LI Ke-Xiu, SONG Yun-Chun, XIONG Zhi-Yong, HE Guang-Yuan. Cytological Identification on the Interspecific Hybrid of Zea mays and Zea diploperennis[J]. Plant Science Journal, 2006, 24(1): 1-5.
    [7]DONG Gao-Feng, CHEN Yi-Zhu, LI Geng-Guang, HUANG Tao, YANG Cheng-Wei. Xanthophyll Cycle and Non-Radiative Energy Dissipation in Sun and Shade Plants[J]. Plant Science Journal, 2001, 19(2): 128-134.
    [8]Li Minghong, Yu Mingjian, Chen Qichang. ACCUMULATION AND CYCLING OF CALCIUM IN AN EVERGREEN BROAD-LEAVED FOREST DOMINATED BY CYCLOBALANOPSIS GLAUCA IN SE, CHINA[J]. Plant Science Journal, 2000, 18(2): 131-137.
    [9]Zhao Bosheng, Mo Hua. DETOXICATION OF ASCORBIC ACID AND MOLYSITE ON THE ROOT GROWTH OF GARLIC UNDER CADMIUM POLLUTION[J]. Plant Science Journal, 1997, 15(2): 167-172.
    [10]Lin Peng. BIOMASS AND ELEMENT CYCLE OF KANDELIA FOREST, CHINA[J]. Plant Science Journal, 1989, 7(3): 251-257.
  • Cited by

    Periodical cited type(9)

    1. 徐萌,王亚楠,李婷婷,赵新英. 拟南芥根中细胞器特异标记蛋白质的定位观察. 山东农业大学学报(自然科学版). 2025(01): 125-132 .
    2. 朱钰雅,倪雅迪,徐羚欣,肖平,段金廒. 中药蛋白结构与功能研究方法与策略探讨. 中国中药杂志. 2024(07): 1705-1716 .
    3. 陈甘露,颜彦,孟宪伟,付莉莉,邱先进,丁泽红,胡伟. 木薯MebZIP2基因克隆及其功能分析. 福建农业学报. 2024(02): 137-146 .
    4. 代蕊,陈崎,爽爽,张岩,张志强,米福贵. 紫花苜蓿MsJAR1基因克隆及表达分析. 草地学报. 2024(05): 1370-1377 .
    5. 韩青,张大伟. 植物蛋白的亚细胞定位观察虚拟仿真实验. 实验科学与技术. 2024(04): 84-89 .
    6. 韦鎔宜,段鹏,李培兰,罗丹,史国民,代吴斌,李凤珍,何涛. 水母雪兔子通气组织形成相关基因SmPAD4的克隆及表达分析. 广西植物. 2024(12): 2265-2278 .
    7. 黄馨田,韩慧杰,李宇琛,刘亚玲,张雅荣,赵彦. 蒙农杂种冰草AcdMYB1基因克隆及表达分析. 草地学报. 2023(08): 2334-2342 .
    8. 李佳楠,高兴泉,李卓,滕小华,黄斌,张继成,唐友. 四种机器学习算法预测大豆蛋白质定位对比研究. 大豆科学. 2022(03): 337-344 .
    9. 苏倩,杜文宣,马琳,夏亚迎,李雪,祁智,庞永珍. 紫花苜蓿MsCIPK2的克隆及功能分析. 中国农业科学. 2022(19): 3697-3709 .

    Other cited types(40)

Catalog

    Article views PDF downloads Cited by(49)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return