Advance Search
Xiong Jing, Wang Chen, Xing Wen-Li, Yu Mu-Kui, Cheng Xiang-Rong, Zhang Cui. Morphological and physiological responses of Ardisia crenata seedlings under different light intensities[J]. Plant Science Journal, 2018, 36(5): 736-744. DOI: 10.11913/PSJ.2095-0837.2018.50736
Citation: Xiong Jing, Wang Chen, Xing Wen-Li, Yu Mu-Kui, Cheng Xiang-Rong, Zhang Cui. Morphological and physiological responses of Ardisia crenata seedlings under different light intensities[J]. Plant Science Journal, 2018, 36(5): 736-744. DOI: 10.11913/PSJ.2095-0837.2018.50736

Morphological and physiological responses of Ardisia crenata seedlings under different light intensities

Funds: 

This work was supported by grants from the Key National Research and Development Program(2017YFC0505500, 2017YFC0505502) and Key Cooperation Projects of Zhejiang and Chinese Academy of Forestry (2014SY01).

More Information
  • Received Date: April 04, 2018
  • Available Online: October 31, 2022
  • Published Date: October 27, 2018
  • Changes in the morphology, biomass, and physiology of Ardisia crenata seedlings were studied under different light environments (100%, 52%, 33%, 15%, and 6% relative light intensities). Results showed that the biomass of individual A. crenata seedlings was significantly higher under 52% light treatment than that under other treatments. The proportion of biomass allocated to leaves under 15%-52% light treatment was also higher than that under 100% and 6% light treatment. The root shoot ratio was not affected by light intensity, indicating that the structural plasticity of A. crenata was relatively low. The concentrations of nitrate increased with the decrease in light intensity and increased significantly under 6% light treatment. The change in nitrate reductase activity with light intensity was consistent with the change in nitrate content. Furthermore, the A. crenata seedlings adapted to different light environments by changing the leaf area and specific leaf area and by regulating the photosynthetic pigment. Analysis of chloroplast ultrastructure also showed that chloroplast number and cellular structure under 15%-52% light treatment were intact. However, under 100% and 6% light treatment, the number of the chloroplasts decreased significantly, the cellular structure was damaged, and plasmolysis occurred. Therefore, the most suitable growth conditions for A. crenata seedlings were under 15%-52% relative light intensities, though the best growth was achieved under 33%-52% relative light treatment.
  • [1]
    徐飞, 郭卫华, 徐伟红, 王仁卿. 不同光环境对麻栎和刺槐幼苗生长和光合特征的影响[J]. 生态学报, 2010, 30(12):3098-3107.

    Xu F, Guo WH, Xu WH, Wang RQ. Effects of light intensity on growth and photosynthesis of seedlings of Quercus acutissima and Robinia pseudoacacia[J]. Acta Ecologica Sinica, 2010, 30(12):3098-3107.
    [2]
    Leakey ADB,Press MC,Scholes JD. Patterns of dyna-mic irradiance affect the photosynthetic capacity and growth of dipterocarp tree seedlings[J]. Oecologia, 2003, 135(2):184-193.
    [3]
    邓波, 曹燕妮, 方升佐, 尚旭岚. 光照强度对青钱柳叶形态结构、光合特性和生长的影响[J]. 东北林业大学学报, 2015, 43(8):1-6.

    Deng B, Cao YN, Fang SZ, Shang LX. Influence of light intensity on leaf morphological structure, photosynthesis characteristics and growth of Cyclocarya paliurus[J]. Journal of Northeast Forestry University, 2015, 43(8):1-6.
    [4]
    岳建平, 席广永, 黎昵. 基于多小波的分布式光纤温度传感监测数据处理[J]. 河海大学学报:自然科学版, 2008, 36(5):675-678.

    Yue JP, Xi GY, Li N. Distributed optical fiber temperature sensing monitoring data processing based on multiwavelet[J]. Journal of Hohai University:Natural Science Edition, 2008, 36(5):675-678.
    [5]
    聂谷华. 观赏、生态及经济三用植物——朱砂根[J]. 河北林业科技, 2010(1):104-105.

    Nie GH. Ornamental, ecological and economic three-use plant-Ardisia crenata[J]. Hebei forestry Science, 2010(1):104-105.
    [6]
    刘敬聪. 耐荫与观果皆优的乡土树种:朱砂根[J]. 广东园林, 2005, 29(3):36-37.

    Liu JC. Local tree species with excellent shade and fruit:Ardisia crenata[J]. Guangdong Landscape Architecture, 2005, 29(3):36-37.
    [7]
    江香梅, 叶金山, 幸伟荣. 紫金牛属植物的药用、观赏价值及其研究进展[J]. 江西林业科技, 2003, 5(12):30-33.

    Jiang XM, Ye JS, Xing WR. The medicinal and ornamental value and research progress of Ardisia[J]. Jiangxi Forestry Science and Technology, 2003, 5(12):30-33.
    [8]
    陶萌春, 廖柏林, 罗盛金. 朱砂根播种育苗技术[J]. 种子, 2014, 33(10):126-128.

    Tao MC, Liao BL, Luo SJ. Technical regulations of sowing seedling-rasing of Ardisia crenata[J]. Seed, 2014, 33(10):126-128.
    [9]
    张伟, 李锟, 李东, 祁献芳, 康文艺. 朱砂根化学成分和药理作用研究进展[J]. 中国实验方剂学杂志, 2011, 17(11):279.

    Zhang W, Li K, Li D, Qi XF, Kang WY. Development of chemical and pharmacological of Ardisia crenata[J]. Chinese Jouranl of Experimental Traditional Medical Formulae, 2011, 17(11):279.
    [10]
    李勇军, 夏彬, 龙庆德, 张桂青, 查俊, 等. 朱砂根主要活性成分的含量测定研究[J]. 时珍国医国药, 2011, 22(8):1929-1931.

    Li YJ, Xia B, Long QD, Zhang GQ, Zha J, et al. The study of the content of main active components of Ardisia crenata[J]. Li Shi Zhen Medicne and Meteria Medica Research, 2011, 22(8):1929-1931.
    [11]
    蔡长福. 朱砂根外植体消毒及启动培养的研究[J]. 安徽农业科学, 2015, 43(26):30-32.

    Cai CF. Study on the sterilization and initiation culture of explant in Ardisia crenata[J]. Journal of Anhui Agriculture Science, 2015, 43(26):30-32.
    [12]
    胡菊, 毛美琴, 杨君, 但方, 马明东. 4种发根农杆菌对朱砂根组培无菌叶片毛状根诱导的影响[J]. 西北植物学报, 2016, 36(2):411-418.

    Hu J, Mao MQ, Yang J, Dan F, Ma MD. Four kinds of Agrobacterium rhizogenes on sterile leaves induction of Ardisia crenata Sims[J]. Acta Botanica Boreali-Occidentalia Sinica, 2016, 36(2):411-418.
    [13]
    邓素芳, 黄烯, 赖钟雄. 朱砂根的药用价值与观赏价值[J]. 亚热带农业研究, 2006, 2(3):176-178.

    Deng SF, Hu X, Lai ZX. Progress in them edicinal and ornamengtal values of Ardisia crenata Sims[J]. Subtropical Agriculture Research, 2006, 2(3):176-178.
    [14]
    Alpert P, Bone E, Holzapfel C. Invasiveness, invisibility and the role of environmental stress in the spread of non-native plants[J]. Perspect Plant Ecol, 2000, 3:52-66.
    [15]
    颉洪涛, 虞木奎, 成向荣. 光照强度变化对5种耐阴植物氮磷养分含量、分配以及限制状况的影响[J]. 植物生态学报, 2017, 41(5):559-569.

    Xie HT, Yu MK, Cheng XR. Effects of light intensity variation on nitrogen and phosphorus contents, allocation and limitation in five shade-enduring plants[J]. Chinese Journal of Plant Ecology, 2017, 41(5):559-569.
    [16]
    成向荣, 周俊宏, 陈永辉, 武克壮, 虞木奎. 山栀子幼苗表型可塑性对不同光环境的响应[J]. 江西农业大学学报, 2016, 38(1):180-186.

    Cheng XR, Zhou JH, Chen YH, Wu KZ, Yu MK. Effects of light intensity on phenotypic plasticity of Gardenia jasminoides seedlings[J]. Acta Agriculturae Universitatis Jiangxiensis, 2016, 38(1):180-186.
    [17]
    张治安, 张美善, 蔚荣海. 植物生理学实验指导[M]. 北京:中国农业科学技术出版社, 2004.

    Zhang ZA, Zhang MS, Wei RH. Guidance on the Experiment of Plant Physiology[M]. Beijing:China Agricultural Science and Technology Press, 2004.
    [18]
    郝再彬, 苍晶, 徐仲. 植物生理实验技术[M]. 哈尔滨:哈尔滨出版社, 2002.

    Hao ZB, Cang J, Xu Z. Plant Physiology Experiment Technology[M]. Harbin:Harbin Publishing House, 2002.
    [19]
    左志锐, 高俊平, 穆鼎, 刘春. 盐胁迫下百合两个品种的叶绿体和线粒体超微结构比较[J]. 园艺学报, 2006, 33(2):429-432.

    Zuo ZR, Gao JP, Mu D, Liu C. A comparative electron microscopic of ultra-structure in different lily cultivars under salt stress[J]. Acta Horticulturae Sinica, 2006, 33(2):429-432.
    [20]
    吴月燕, 李波, 张燕忠, 崔鹏. 盐胁迫对杜鹃生理生化与叶绿体亚显微结构的影响[J]. 浙江大学学报:农业与生命科学版, 2011, 37(6):642-648.

    Wu YY, Li B, Zhang YZ, Cui P. Effects of salt stress on physiological-biochemical characteristics and chloroplast submicroscopic structure of Rhododendron indicum[J]. Journal of Zhejiang University:Agriculture and Life Science, 2011, 37(6):642-648.
    [21]
    孟婷婷, 倪健, 王国宏. 植物功能性状与环境和生态系统功能[J]. 植物生态学报, 2007, 31(1):150-165.

    Meng TT, Ni J, Wang GH. Plant functional traits, environments and ecosystem functioning[J]. Journal of Plant Ecology, 2007, 31(1):150-165.
    [22]
    周俊宏, 成向荣, 虞木奎, 诸葛建军. 紫楠幼苗生长、叶性状和生物量分配对林窗不同生境的响应[J]. 东北林业大学学报, 2015, 43(12):21-24, 50.

    Zhou JH, Cheng XR, Yu MK, Zhuge JJ. Responses of growth, leaf traits and biomass allocation of Phoebe sheareri seedlings to different habitats in forest gap[J]. Journal of Northeast Forestry University, 2015, 43(12):21-24, 50.
    [23]
    Wang GG, Bauerle WL, Mudder BT. Effects of light acclimation on the photosynthesis, growth, and biomass allocation in American chestnut (Castanea dentata) seedlings[J]. Forest Ecol Manag, 2006, 26:173-180.
    [24]
    Saldana-Acosta A, Meave JA, Sánchez-Velásquez LR. Seedling biomass allocation and vital rates of cloud forest tree species:responses to light in shade house conditions[J]. Forest Ecol Manag, 2009, 258:1650-1659.
    [25]
    Poorter H, Nagel O. The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water:a quantitative review[J]. Aust J Plant Physiol, 2000, 27:595-607.
    [26]
    Nishimura E, Suzaki E, Irie M. Architecture and growth of an annual plant chenopodium album in different light climates[J]. Ecol Res, 2010, 25(2):383-393.
    [27]
    周忆堂, 马红群, 梁丽娇, 洪鸿, 胡丽涛, 等. 不同光照条件下长春花的光合作用和叶绿素荧光动力学特征[J]. 中国农业科学, 2008, 41(11):3589-3595.

    Zhou YT, Ma HQ, Liang LJ, Hong H, Hu LT, et al. Photosynthetic characteristics and chlorophyll fluorescence in leaves of Catharanthus roseus grown under different light intensities[J]. Scientia Agricultura Sinica, 2008, 41(11):3589-3595.
    [28]
    罗俊, 张木清, 吕建林, 林彦铨. 水分胁迫对不同甘蔗品种叶绿素a荧光动力学的影响[J]. 福建农业大学学报, 2002, 29(1):18-22.

    Luo J, Zhang MQ, Lü JL, Lin YS. Effects of water stress on the chlorophyll a fluorescence induction kinetics of sugarcane genotypes[J]. Journal of Fujian Agricultural University, 2002, 29(1):18-22.
    [29]
    王亚芸, 王立英, 任建武, 姚洪军, 沙海峰. 金叶榆不同叶位叶片呈色生理机制研究[J]. 中国农学通报, 2014, 30(16):22-29.

    Wang YY, Wang LY, Ren JW, Yao HJ, Sha HF. The study of color-emerging mechanism of leaves at different leaf position of Ulmus pumila ‘Jinye’[J]. Chinese Agricultural Science Bulletin, 2014, 30(16):22-29.
    [30]
    Iriti M, Faoro F. Chemical diversity and defence metabolism:how plants cope with pathogens and ozone pollution[J]. Int Journal Mol Sci, 2009, 10(8):3371-3399.
    [31]
    陈青君, 张福墁, 王永健, 藏田宪次. 黄瓜对低温弱光反应的生理特征研究[J]. 中国农业科学, 2003, 36(1):77-81.

    Chen QJ, Zhang FM, Wang YJ, Zangtian XC. Studies of physiologic characteristics of reaction of cucumber to low temperature and poor light[J]. Scientia Agricultura Sinica, 2003, 36(1):77-81.
    [32]
    张莉, 续九如. 水分胁迫下剌槐不同无性系生理生化反应的研究[J]. 林业科学, 2003,39(4):162-167.

    Zhang L, Xu JR. Studies on physiological and biochemical responeses of Robinia pseudoacacia clones under water stress[J]. Scientia Silvae Sinicae, 2003,39(4):162-167.
    [33]
    杨柳, 何正军, 赵文吉, 贾国夫, 来利明, 等. 狭叶红景天幼苗对水分及遮阴的生长及生理生化响应[J]. 生态学报, 2017, 37(14):4706-4714.

    Yang L, He ZJ, Zhao WJ, Jia GF, Lai LM, et al. Growth, physiological, and biochemical responses of Rhodiola kirilowii seedlings to water and shading[J]. Acta Ecologica Sinica, 2017, 37(14):4706-4714.
    [34]
    Amini F, Ehsanpour AA. Soluble proteins, proline, carbohydrates and Na+/K+ changes in two tomato (Lycopersicon esculentum Mill.) cultivars under in vitro salt stress[J]. American Journal of Biochemistry and Biotechnology, 2005, 1(4):212-216.
    [35]
    冯坤, 郑青松, 俞佳虹, 程远, 叶青静, 等. 超氧化物歧化酶的遗传特征及其在植物抗逆性中的研究进展[J]. 分子植物育种, 2017, 15(11):4498-4505.

    Feng K, Zheng QS, Yu JH, Cheng Y, Ye QJ, et al. The characteristics of superoxide dismutase (SOD) in evolutions and its research in plant resistance[J]. Molecular Plant Breeding, 2017, 15(11):4498-4505.
    [36]
    王志昊, 叶冬梅, 何炎红, 张智慧, 张国盛, 段国珍. 5种沙生植物丙二醛、脯氨酸和2种氧化物酶比较[J]. 分子植物育种, 2018, 16(11):3727-3731.

    Wang ZH, Ye DM, He YH, Zhang ZH, Zhang GS, Duan GZ. Comparison of the content of MDA, proline and activity of two kinds of enzyme in 5 common desert plants[J]. Molecular Plant Breeding, 2018, 16(11):3727-3731.
    [37]
    贾晓龙, 陈鸽, 南桂仙. 三种非生物胁迫对蒙古柳幼苗电导率和丙二醛含量的影响[J]. 黑龙江科学, 2017, 8(24):13-14, 19.

    Jia XL, Chen G, Nan GX. Influences of three stress treatments on electric conductivity and malondialdehyde content on Salix linearistipularis seedlings[J]. Heilongjiang Science, 2017, 8(24):13-14, 19.
    [38]
    林多, 黄丹枫, 杨延杰, 陈宁. 钾素水平对网纹甜瓜叶片光合特性及叶绿体亚显微结构的影响[J]. 应用生态学报, 2007, 18(5):1068-1072.

    Lin D, Huang DF, Yang YJ, Chen N. Effects of potassium level on photosynthetic characteristics and chloroplast submicroscopic structure of Muskmelon leaves[J]. Chinese Journal of Applied Ecology, 2007, 18(5):1068-1072.
    [39]
    陶巧静, 吴月燕, 付涛, 项锡娜, 李波. 弱光胁迫对西洋杜鹃生理特性和叶片超微结构的影响[J]. 林业科学, 2015, 51(3):84-92.

    Tao QJ, Wu YY, Fu T, Xiang XN, Li B. Effect of low light stress on physiological characteristics and ultrastructure of Rhododendron hybridum leaves[J]. Scientia Silvae Sinicae, 2015, 51(3):84-92.
  • Related Articles

    [1]Sun Linjuan, Liu Taoli, Liu Hai, Yuan Dingyang, Yang Xulei, Xu Yusheng, Chen Siyang, Zeng Jianguang, Huang Yubo, Tan Yanning. Effect of ascorbic acid oxidation inhibition on growth of Oryza sativa L. seedlings under abscisic acid (ABA) treatment[J]. Plant Science Journal, 2024, 42(6): 806-814. DOI: 10.11913/PSJ.2095-0837.23378
    [2]Sun De-Zhi, Han Xiao-Ri, Peng Jing, Fan Fu, Song Gui-Yun, Yang Heng-Shan. Effects of exogenous nitric oxide and salicylic acid on membrane peroxidation and the ascorbate-glutathione cycle in leaves of Lycopersicon esculentum seedlings under NaCl stress[J]. Plant Science Journal, 2018, 36(4): 612-622. DOI: 10.11913/PSJ.2095-0837.2018.40612
    [3]YAN Zhi-Ming, SUN Jin, GUO Shi-Rong, WEI Yue, HU De-Long, WANG Quan-Zhi. Effects of Exogenous Proline on the Ascorbate-Glutathione Cycle in Roots of Cucumis melo Seedlings under Salt Stress[J]. Plant Science Journal, 2014, 32(5): 502-508. DOI: 10.11913/PSJ.2095-0837.2014.50502
    [4]WEI Jin-Chi, YANG Hai-Ling. Functional Divergence of Two Glutathione Peroxidase Genes in Oryza sativa[J]. Plant Science Journal, 2013, 31(1): 64-72. DOI: 10.3724/SP.J.1142.2013.10064
    [5]QIU Zong-Bo, LI Fang-Min, WANG Fang, YUE Ming. Effects of CO2 Laser on Glutathione-dependent Antioxidative System in Wheat Seedling under Drought Stress[J]. Plant Science Journal, 2008, 26(4): 402-406.
    [6]LI Cong-Qiang, LIN Gang, LI Ke-Xiu, SONG Yun-Chun, XIONG Zhi-Yong, HE Guang-Yuan. Cytological Identification on the Interspecific Hybrid of Zea mays and Zea diploperennis[J]. Plant Science Journal, 2006, 24(1): 1-5.
    [7]DONG Gao-Feng, CHEN Yi-Zhu, LI Geng-Guang, HUANG Tao, YANG Cheng-Wei. Xanthophyll Cycle and Non-Radiative Energy Dissipation in Sun and Shade Plants[J]. Plant Science Journal, 2001, 19(2): 128-134.
    [8]Li Minghong, Yu Mingjian, Chen Qichang. ACCUMULATION AND CYCLING OF CALCIUM IN AN EVERGREEN BROAD-LEAVED FOREST DOMINATED BY CYCLOBALANOPSIS GLAUCA IN SE, CHINA[J]. Plant Science Journal, 2000, 18(2): 131-137.
    [9]Zhao Bosheng, Mo Hua. DETOXICATION OF ASCORBIC ACID AND MOLYSITE ON THE ROOT GROWTH OF GARLIC UNDER CADMIUM POLLUTION[J]. Plant Science Journal, 1997, 15(2): 167-172.
    [10]Lin Peng. BIOMASS AND ELEMENT CYCLE OF KANDELIA FOREST, CHINA[J]. Plant Science Journal, 1989, 7(3): 251-257.
  • Cited by

    Periodical cited type(9)

    1. 徐萌,王亚楠,李婷婷,赵新英. 拟南芥根中细胞器特异标记蛋白质的定位观察. 山东农业大学学报(自然科学版). 2025(01): 125-132 .
    2. 朱钰雅,倪雅迪,徐羚欣,肖平,段金廒. 中药蛋白结构与功能研究方法与策略探讨. 中国中药杂志. 2024(07): 1705-1716 .
    3. 陈甘露,颜彦,孟宪伟,付莉莉,邱先进,丁泽红,胡伟. 木薯MebZIP2基因克隆及其功能分析. 福建农业学报. 2024(02): 137-146 .
    4. 代蕊,陈崎,爽爽,张岩,张志强,米福贵. 紫花苜蓿MsJAR1基因克隆及表达分析. 草地学报. 2024(05): 1370-1377 .
    5. 韩青,张大伟. 植物蛋白的亚细胞定位观察虚拟仿真实验. 实验科学与技术. 2024(04): 84-89 .
    6. 韦鎔宜,段鹏,李培兰,罗丹,史国民,代吴斌,李凤珍,何涛. 水母雪兔子通气组织形成相关基因SmPAD4的克隆及表达分析. 广西植物. 2024(12): 2265-2278 .
    7. 黄馨田,韩慧杰,李宇琛,刘亚玲,张雅荣,赵彦. 蒙农杂种冰草AcdMYB1基因克隆及表达分析. 草地学报. 2023(08): 2334-2342 .
    8. 李佳楠,高兴泉,李卓,滕小华,黄斌,张继成,唐友. 四种机器学习算法预测大豆蛋白质定位对比研究. 大豆科学. 2022(03): 337-344 .
    9. 苏倩,杜文宣,马琳,夏亚迎,李雪,祁智,庞永珍. 紫花苜蓿MsCIPK2的克隆及功能分析. 中国农业科学. 2022(19): 3697-3709 .

    Other cited types(40)

Catalog

    Article views (723) PDF downloads (837) Cited by(49)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return