Citation: | Li Guang-Lu, Wang Wen-Guo, Chen Zhi-Xin, Hu Zeng-Hui, Leng Ping-Sheng. Effect of calcium on ion contents in different organs and absorption of K+ and Na+ in the root tips of Mesembryanthemum crystallinum L. under NaCl stress[J]. Plant Science Journal, 2018, 36(2): 282-290. DOI: 10.11913/PSJ.2095-0837.2018.20282 |
[1] |
Zhu JK. Salt and drought stress signal transduction in plants[J]. Ann Rev Plant Biol, 2002, 53(53):247-273.
|
[2] |
Parida AK, Das AB. Salt tolerance and salinity effects on plants:a review[J]. Ecotox Environ Safe, 2005, 60(3):324-349.
|
[3] |
Mahajan S, Pandey GK, Tuteja N. Calcium-and salt-stress signaling in plants:shedding light on SOS pathway[J]. Arch Biochem Biophys, 2008, 471(2):146-158.
|
[4] |
杨利艳, 韩榕. Ca2+对小麦萌发及幼苗抗盐性的效应[J]. 植物学报, 2011, 46(2):155-161.
Yang LY, Han R. Effects of Ca2+ on wheat germination and seedling development under saline stress[J]. Chinese Bulletin of Botany, 2011, 46(2):155-161.
|
[5] |
严蓓,孙锦,束胜,郭世荣. 外源钙对NaCl胁迫下黄瓜幼苗叶片光合特性及碳水化合物代谢的影响[J]. 南京农业大学学报, 2014, 37(1):31-36.
Yan B, Sun J, Shu S, Guo SR. Effects of exogenous calcium on photosynthetic characteristics and carbohydrate metabolism in leaves of cucumber(Cucumis sativus L.) seedlings under NaCl stress[J]. Journal of Nanjing Agricultural University, 2014, 37(1):31-36.
|
[6] |
Haider MS, Barnes JD, Cushman JC, Borland AM. A CAM-and starch-deficient mutant of the facultative CAM species Mesembryanthemum crystallinum reconciles sink demands by repartitioning carbon during acclimation to salinity[J]. J Exp Bot, 2012, 63(5):1985-1996.
|
[7] |
Himabindu Y, Chakradhar T, Reddy MC, Kanygin A, Redding KE, Chandrasekhar T. Salt-tolerant genes from halophytes are potential key players of salt tolerance in glycophytes[J]. Environ Exp Bot, 2016, 124:39-63.
|
[8] |
鲁彦君. 两种非泌盐红树离子平衡调控机理与耐盐性研究[D]. 北京:北京林业大学, 2013.
|
[9] |
孙健. 胡杨响应盐胁迫与离子平衡调控信号网络研究[D]. 北京:北京林业大学, 2011.
|
[10] |
李娜, 张海林, 李秀芬, 柳超. 钙在植物盐胁迫中的作用[J]. 生命科学, 2015, 27(4):504-508.
Li N, Zhang HL, Li XF, Liu C. Function of Ca2+ in salt stress in plants[J]. Chinese Bulletin of Life Sciences, 2015, 27(4):504-508.
|
[11] |
Srivastava AK, Rai AN, Patade VY, Suprasanna P. Calcium signaling and its significance in alleviating salt stress in plants[M]//Ahmad P, Prasad MNV, Azooz MM, eds. Salt Stress in Slants:Signalling, Omics and Adaptations. New York:Springer Publishing, 2013:197-218.
|
[12] |
杨莎, 侯林琳, 郭峰, 张佳蕾, 耿耘, 孟静静, 李新国, 万书波. 盐胁迫下外源Ca2+对花生生长发育、生理及产量的影响[J]. 应用生态学报, 2017, 28(3):894-900.
Yang S, Hou LL, Guo F, Zhang JL, Geng Y, Meng JJ, Li XG, Wang SB. Effects of exogenous Ca2+ on growth and development, physiology and yield of peanut under salt stress[J]. Chinese Journal of Applied Ecology, 2017, 28(3):894-900.
|
[13] |
Zhu JK. Regulation of ion homeostasis under salt stress[J]. Curr Opin Plant Biol, 2003, 6(5):441-445.
|
[14] |
周鹏, 张敏. 盐胁迫对灌木柳体内离子分布的影响[J]. 中南林业科技大学学报, 2017, 37(1):7-11, 26.
Zhou P, Zhang M. Effects of salt stress on ionic distribution of shrub willow[J]. Journal of Central South University of Forestry & Technology, 2017, 37(1):7-11, 26.
|
[15] |
韩志平, 郭世荣, 郑瑞娜, 束胜, 闫海霞. 盐胁迫对小型西瓜幼苗体内离子分布的影响[J]. 植物营养与肥料学报, 2013, 19(4):908-917.
Han ZP, Guo SR, Zheng RN, Shu S, Yan HX. Effect of salinity on distribution of ions in mini-watermelon seedlings[J]. Journal of Plant Nutrition and Fertilizer, 2013, 19(4):908-917.
|
[16] |
Adams P, Nelson DE, Yamada S, Chmara W, Jensen RG, Bohnert HJ, Griffiths H. Growth and development of Mesembryanthemum crystallinum (Aizoaceae)[J]. New Phytol, 1998, 138(2):171-190.
|
[17] |
朱义, 何池全, 杜玮, 胡一灵, 陈宇. 盐胁迫下外源钙对高羊茅种子萌发和幼苗离子分布的影响[J]. 农业工程学报, 2007, 23(11):133-137.
Zhu Y, He CQ, Du W, Hu YL, Chen Y. Effects of exogenous calcium on the seed germination and seedling ions distribution of Festuca arundinacea under salt-stress[J]. Transactions of the Chinese Society of Agricultural Engineering, 2007, 23(11):133-137.
|
[18] |
魏翠果, 陈有君, 蒙美莲, 李鑫杰, 宋树慧, 任少勇, 肖强. 钙对NaCl胁迫下马铃薯脱毒苗离子吸收、分布的影响[J]. 植物营养与肥料学报, 2015, 21(4):993-1005.
Wei CG, Chen YJ, Meng ML, Li XJ, Song SH, Ren SY, Xiao Q. Effects of calcium on ion absorption and distribution of virus-free potato seedlings under NaCl stress[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(4):993-1005.
|
[19] |
宗会, 徐照丽, 刘娥娥, 李明启. 盐胁迫下氯丙嗪和LaCl3对稻苗K+、Na+、Cl-吸收转运的影响[J]. 植物生理学报, 2001, 27(4):291-295.
Zong H, Xu ZL, Liu EE, Li MQ. Effects of CPZ and LaCl3 on uptake and transport of K+, Na+ and Cl- in rice seedlings under salt stress[J]. Acta Photophysiologica Sinica, 2001, 27(4):291-295.
|
[20] |
杨升, 张华新, 陈秋夏, 杨秀艳. 沙枣幼苗根尖离子流对NaCl胁迫的响应[J]. 植物生态学报, 2017, 41(4):489-496.
Yang S, Zhang HX, Chen QX, Yang XY. Responses of apical ion fluxes to NaCl stress in Elaeagnus angustifolia seedlings[J]. Chinese Journal of Plant Ecology, 2017, 41(4):489-496.
|
[21] |
Sun J, Dai SX, Wang RG, Chen SL, Li N, et al. Calcium mediates root K+/Na+ homeostasis in poplar species differing in salt tolerance[J]. Tree Physiol, 2009, 29(9):1175-1186.
|
[22] |
Lu Y, Li N, Sun J, Hou P, Jing X, Zhu H, et al. Exogenous hydrogen peroxide, nitric oxide and calcium mediate root ion fluxes in two non-secretor mangrove species subjected to NaCl stress[J]. Tree Physiol, 2013, 33(1):81-95.
|
[23] |
Shabala S, Demidchik V, Shabala L, Cuin TA, Smith SJ, Miller AJ, et al. Extracellular Ca2+ ameliorates NaCl-induced K+ loss from Arabidopsis root and leaf cells by controlling plasma membrane K+ -permeable channels[J]. Plant Physiol, 2006, 141(4):1653-1665.
|