Advance Search
Li Guang-Lu, Wang Wen-Guo, Chen Zhi-Xin, Hu Zeng-Hui, Leng Ping-Sheng. Effect of calcium on ion contents in different organs and absorption of K+ and Na+ in the root tips of Mesembryanthemum crystallinum L. under NaCl stress[J]. Plant Science Journal, 2018, 36(2): 282-290. DOI: 10.11913/PSJ.2095-0837.2018.20282
Citation: Li Guang-Lu, Wang Wen-Guo, Chen Zhi-Xin, Hu Zeng-Hui, Leng Ping-Sheng. Effect of calcium on ion contents in different organs and absorption of K+ and Na+ in the root tips of Mesembryanthemum crystallinum L. under NaCl stress[J]. Plant Science Journal, 2018, 36(2): 282-290. DOI: 10.11913/PSJ.2095-0837.2018.20282

Effect of calcium on ion contents in different organs and absorption of K+ and Na+ in the root tips of Mesembryanthemum crystallinum L. under NaCl stress

Funds: 

This work was supported by grants from the National Natural Science Foundation of China (31201645) and Project of Construction of Innovative Teams and Teacher Career Development for Universities and Colleges under Beijing Municipality (IDHT20150503, IDHT20180509).

More Information
  • Received Date: October 09, 2017
  • Available Online: October 31, 2022
  • Published Date: April 27, 2018
  • In this study, the seedlings of Mesembryanthemum crystallinum L. were used as plant material. After treatment with NaCl, NaCl + CaCl2, and NaCl + LaCl3, the contents of Na+, K+, Ca2+, and Mg2+ in the leaves, stems, and roots were tested using ICP-OES, with the values of K+/Na+, Ca2+/Na+, and Mg2+/Na+ also calculated to explore the role of calcium in maintaining ion balance under NaCl stress. The fluxes of Na+ and K+ were also determined by the non-invasive micro-test technique (NMT). Results showed that after NaCl treatment, the content of Na+ in the three plant organs increased, whereas the contents of K+, Ca2+, and Mg2+ decreased, as did the ion content ratios. The addition of CaCl2 reduced the content of Na+, but increased the contents of K+, Ca2+, and Mg2+ as well as the ion content ratios. Conversely, LaCl3 treatment caused the opposite results. After treatment with NaCl for 24 h, significant effluxes of Na+ and K+ were found in the root tip, indicating that M. crystallinum L. was in a state of ionic imbalance. After the addition of CaCl2, the efflux rate of Na+ increased obviously, whereas that of K+ was inhibited. Conversely, the addition of LaCl3 reduced Na+ efflux but accelerated K+ efflux. The above results suggested that when M. crystallinum L. exposed to salt stress, calcium promoted Na+ efflux but reduced K+ efflux in the root tips, and maintained lower Na+ content in the three plant organs, suggesting that calcium plays an important role in maintaining and regulating ionic balance.
  • [1]
    Zhu JK. Salt and drought stress signal transduction in plants[J]. Ann Rev Plant Biol, 2002, 53(53):247-273.
    [2]
    Parida AK, Das AB. Salt tolerance and salinity effects on plants:a review[J]. Ecotox Environ Safe, 2005, 60(3):324-349.
    [3]
    Mahajan S, Pandey GK, Tuteja N. Calcium-and salt-stress signaling in plants:shedding light on SOS pathway[J]. Arch Biochem Biophys, 2008, 471(2):146-158.
    [4]
    杨利艳, 韩榕. Ca2+对小麦萌发及幼苗抗盐性的效应[J]. 植物学报, 2011, 46(2):155-161.

    Yang LY, Han R. Effects of Ca2+ on wheat germination and seedling development under saline stress[J]. Chinese Bulletin of Botany, 2011, 46(2):155-161.
    [5]
    严蓓,孙锦,束胜,郭世荣. 外源钙对NaCl胁迫下黄瓜幼苗叶片光合特性及碳水化合物代谢的影响[J]. 南京农业大学学报, 2014, 37(1):31-36.

    Yan B, Sun J, Shu S, Guo SR. Effects of exogenous calcium on photosynthetic characteristics and carbohydrate metabolism in leaves of cucumber(Cucumis sativus L.) seedlings under NaCl stress[J]. Journal of Nanjing Agricultural University, 2014, 37(1):31-36.
    [6]
    Haider MS, Barnes JD, Cushman JC, Borland AM. A CAM-and starch-deficient mutant of the facultative CAM species Mesembryanthemum crystallinum reconciles sink demands by repartitioning carbon during acclimation to salinity[J]. J Exp Bot, 2012, 63(5):1985-1996.
    [7]
    Himabindu Y, Chakradhar T, Reddy MC, Kanygin A, Redding KE, Chandrasekhar T. Salt-tolerant genes from halophytes are potential key players of salt tolerance in glycophytes[J]. Environ Exp Bot, 2016, 124:39-63.
    [8]
    鲁彦君. 两种非泌盐红树离子平衡调控机理与耐盐性研究[D]. 北京:北京林业大学, 2013.
    [9]
    孙健. 胡杨响应盐胁迫与离子平衡调控信号网络研究[D]. 北京:北京林业大学, 2011.
    [10]
    李娜, 张海林, 李秀芬, 柳超. 钙在植物盐胁迫中的作用[J]. 生命科学, 2015, 27(4):504-508.

    Li N, Zhang HL, Li XF, Liu C. Function of Ca2+ in salt stress in plants[J]. Chinese Bulletin of Life Sciences, 2015, 27(4):504-508.
    [11]
    Srivastava AK, Rai AN, Patade VY, Suprasanna P. Calcium signaling and its significance in alleviating salt stress in plants[M]//Ahmad P, Prasad MNV, Azooz MM, eds. Salt Stress in Slants:Signalling, Omics and Adaptations. New York:Springer Publishing, 2013:197-218.
    [12]
    杨莎, 侯林琳, 郭峰, 张佳蕾, 耿耘, 孟静静, 李新国, 万书波. 盐胁迫下外源Ca2+对花生生长发育、生理及产量的影响[J]. 应用生态学报, 2017, 28(3):894-900.

    Yang S, Hou LL, Guo F, Zhang JL, Geng Y, Meng JJ, Li XG, Wang SB. Effects of exogenous Ca2+ on growth and development, physiology and yield of peanut under salt stress[J]. Chinese Journal of Applied Ecology, 2017, 28(3):894-900.
    [13]
    Zhu JK. Regulation of ion homeostasis under salt stress[J]. Curr Opin Plant Biol, 2003, 6(5):441-445.
    [14]
    周鹏, 张敏. 盐胁迫对灌木柳体内离子分布的影响[J]. 中南林业科技大学学报, 2017, 37(1):7-11, 26.

    Zhou P, Zhang M. Effects of salt stress on ionic distribution of shrub willow[J]. Journal of Central South University of Forestry & Technology, 2017, 37(1):7-11, 26.
    [15]
    韩志平, 郭世荣, 郑瑞娜, 束胜, 闫海霞. 盐胁迫对小型西瓜幼苗体内离子分布的影响[J]. 植物营养与肥料学报, 2013, 19(4):908-917.

    Han ZP, Guo SR, Zheng RN, Shu S, Yan HX. Effect of salinity on distribution of ions in mini-watermelon seedlings[J]. Journal of Plant Nutrition and Fertilizer, 2013, 19(4):908-917.
    [16]
    Adams P, Nelson DE, Yamada S, Chmara W, Jensen RG, Bohnert HJ, Griffiths H. Growth and development of Mesembryanthemum crystallinum (Aizoaceae)[J]. New Phytol, 1998, 138(2):171-190.
    [17]
    朱义, 何池全, 杜玮, 胡一灵, 陈宇. 盐胁迫下外源钙对高羊茅种子萌发和幼苗离子分布的影响[J]. 农业工程学报, 2007, 23(11):133-137.

    Zhu Y, He CQ, Du W, Hu YL, Chen Y. Effects of exogenous calcium on the seed germination and seedling ions distribution of Festuca arundinacea under salt-stress[J]. Transactions of the Chinese Society of Agricultural Engineering, 2007, 23(11):133-137.
    [18]
    魏翠果, 陈有君, 蒙美莲, 李鑫杰, 宋树慧, 任少勇, 肖强. 钙对NaCl胁迫下马铃薯脱毒苗离子吸收、分布的影响[J]. 植物营养与肥料学报, 2015, 21(4):993-1005.

    Wei CG, Chen YJ, Meng ML, Li XJ, Song SH, Ren SY, Xiao Q. Effects of calcium on ion absorption and distribution of virus-free potato seedlings under NaCl stress[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(4):993-1005.
    [19]
    宗会, 徐照丽, 刘娥娥, 李明启. 盐胁迫下氯丙嗪和LaCl3对稻苗K+、Na+、Cl-吸收转运的影响[J]. 植物生理学报, 2001, 27(4):291-295.

    Zong H, Xu ZL, Liu EE, Li MQ. Effects of CPZ and LaCl3 on uptake and transport of K+, Na+ and Cl- in rice seedlings under salt stress[J]. Acta Photophysiologica Sinica, 2001, 27(4):291-295.
    [20]
    杨升, 张华新, 陈秋夏, 杨秀艳. 沙枣幼苗根尖离子流对NaCl胁迫的响应[J]. 植物生态学报, 2017, 41(4):489-496.

    Yang S, Zhang HX, Chen QX, Yang XY. Responses of apical ion fluxes to NaCl stress in Elaeagnus angustifolia seedlings[J]. Chinese Journal of Plant Ecology, 2017, 41(4):489-496.
    [21]
    Sun J, Dai SX, Wang RG, Chen SL, Li N, et al. Calcium mediates root K+/Na+ homeostasis in poplar species differing in salt tolerance[J]. Tree Physiol, 2009, 29(9):1175-1186.
    [22]
    Lu Y, Li N, Sun J, Hou P, Jing X, Zhu H, et al. Exogenous hydrogen peroxide, nitric oxide and calcium mediate root ion fluxes in two non-secretor mangrove species subjected to NaCl stress[J]. Tree Physiol, 2013, 33(1):81-95.
    [23]
    Shabala S, Demidchik V, Shabala L, Cuin TA, Smith SJ, Miller AJ, et al. Extracellular Ca2+ ameliorates NaCl-induced K+ loss from Arabidopsis root and leaf cells by controlling plasma membrane K+ -permeable channels[J]. Plant Physiol, 2006, 141(4):1653-1665.
  • Related Articles

    [1]Sun Linjuan, Liu Taoli, Liu Hai, Yuan Dingyang, Yang Xulei, Xu Yusheng, Chen Siyang, Zeng Jianguang, Huang Yubo, Tan Yanning. Effect of ascorbic acid oxidation inhibition on growth of Oryza sativa L. seedlings under abscisic acid (ABA) treatment[J]. Plant Science Journal, 2024, 42(6): 806-814. DOI: 10.11913/PSJ.2095-0837.23378
    [2]Sun De-Zhi, Han Xiao-Ri, Peng Jing, Fan Fu, Song Gui-Yun, Yang Heng-Shan. Effects of exogenous nitric oxide and salicylic acid on membrane peroxidation and the ascorbate-glutathione cycle in leaves of Lycopersicon esculentum seedlings under NaCl stress[J]. Plant Science Journal, 2018, 36(4): 612-622. DOI: 10.11913/PSJ.2095-0837.2018.40612
    [3]YAN Zhi-Ming, SUN Jin, GUO Shi-Rong, WEI Yue, HU De-Long, WANG Quan-Zhi. Effects of Exogenous Proline on the Ascorbate-Glutathione Cycle in Roots of Cucumis melo Seedlings under Salt Stress[J]. Plant Science Journal, 2014, 32(5): 502-508. DOI: 10.11913/PSJ.2095-0837.2014.50502
    [4]WEI Jin-Chi, YANG Hai-Ling. Functional Divergence of Two Glutathione Peroxidase Genes in Oryza sativa[J]. Plant Science Journal, 2013, 31(1): 64-72. DOI: 10.3724/SP.J.1142.2013.10064
    [5]QIU Zong-Bo, LI Fang-Min, WANG Fang, YUE Ming. Effects of CO2 Laser on Glutathione-dependent Antioxidative System in Wheat Seedling under Drought Stress[J]. Plant Science Journal, 2008, 26(4): 402-406.
    [6]LI Cong-Qiang, LIN Gang, LI Ke-Xiu, SONG Yun-Chun, XIONG Zhi-Yong, HE Guang-Yuan. Cytological Identification on the Interspecific Hybrid of Zea mays and Zea diploperennis[J]. Plant Science Journal, 2006, 24(1): 1-5.
    [7]DONG Gao-Feng, CHEN Yi-Zhu, LI Geng-Guang, HUANG Tao, YANG Cheng-Wei. Xanthophyll Cycle and Non-Radiative Energy Dissipation in Sun and Shade Plants[J]. Plant Science Journal, 2001, 19(2): 128-134.
    [8]Li Minghong, Yu Mingjian, Chen Qichang. ACCUMULATION AND CYCLING OF CALCIUM IN AN EVERGREEN BROAD-LEAVED FOREST DOMINATED BY CYCLOBALANOPSIS GLAUCA IN SE, CHINA[J]. Plant Science Journal, 2000, 18(2): 131-137.
    [9]Zhao Bosheng, Mo Hua. DETOXICATION OF ASCORBIC ACID AND MOLYSITE ON THE ROOT GROWTH OF GARLIC UNDER CADMIUM POLLUTION[J]. Plant Science Journal, 1997, 15(2): 167-172.
    [10]Lin Peng. BIOMASS AND ELEMENT CYCLE OF KANDELIA FOREST, CHINA[J]. Plant Science Journal, 1989, 7(3): 251-257.
  • Cited by

    Periodical cited type(9)

    1. 徐萌,王亚楠,李婷婷,赵新英. 拟南芥根中细胞器特异标记蛋白质的定位观察. 山东农业大学学报(自然科学版). 2025(01): 125-132 .
    2. 朱钰雅,倪雅迪,徐羚欣,肖平,段金廒. 中药蛋白结构与功能研究方法与策略探讨. 中国中药杂志. 2024(07): 1705-1716 .
    3. 陈甘露,颜彦,孟宪伟,付莉莉,邱先进,丁泽红,胡伟. 木薯MebZIP2基因克隆及其功能分析. 福建农业学报. 2024(02): 137-146 .
    4. 代蕊,陈崎,爽爽,张岩,张志强,米福贵. 紫花苜蓿MsJAR1基因克隆及表达分析. 草地学报. 2024(05): 1370-1377 .
    5. 韩青,张大伟. 植物蛋白的亚细胞定位观察虚拟仿真实验. 实验科学与技术. 2024(04): 84-89 .
    6. 韦鎔宜,段鹏,李培兰,罗丹,史国民,代吴斌,李凤珍,何涛. 水母雪兔子通气组织形成相关基因SmPAD4的克隆及表达分析. 广西植物. 2024(12): 2265-2278 .
    7. 黄馨田,韩慧杰,李宇琛,刘亚玲,张雅荣,赵彦. 蒙农杂种冰草AcdMYB1基因克隆及表达分析. 草地学报. 2023(08): 2334-2342 .
    8. 李佳楠,高兴泉,李卓,滕小华,黄斌,张继成,唐友. 四种机器学习算法预测大豆蛋白质定位对比研究. 大豆科学. 2022(03): 337-344 .
    9. 苏倩,杜文宣,马琳,夏亚迎,李雪,祁智,庞永珍. 紫花苜蓿MsCIPK2的克隆及功能分析. 中国农业科学. 2022(19): 3697-3709 .

    Other cited types(40)

Catalog

    Article views (718) PDF downloads (1001) Cited by(49)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return