Advance Search
Chen Xiao-Lin, Chen Ya-Peng, Li Wei-Hong, Wang Yu-Yang. Spatial distribution characteristics of fine roots of Populus euphratica Oliv. under different groundwater depths in arid regions[J]. Plant Science Journal, 2018, 36(1): 45-53. DOI: 10.11913/PSJ.2095-0837.2018.10045
Citation: Chen Xiao-Lin, Chen Ya-Peng, Li Wei-Hong, Wang Yu-Yang. Spatial distribution characteristics of fine roots of Populus euphratica Oliv. under different groundwater depths in arid regions[J]. Plant Science Journal, 2018, 36(1): 45-53. DOI: 10.11913/PSJ.2095-0837.2018.10045

Spatial distribution characteristics of fine roots of Populus euphratica Oliv. under different groundwater depths in arid regions

Funds: 

This work was supported by grants from the Pioneer Initiative Program of Chinese Academy of Science (TSS-2015-014-FW-2-3) and National Natural Science Foundation of China (41371515).

More Information
  • Received Date: July 16, 2017
  • Available Online: October 31, 2022
  • Published Date: February 27, 2018
  • The spatial distribution of fine roots can well reflect the utilization degree and adaptability of plants to the environment, which is essential for the evaluation of adaptation to adverse circumstances. We investigated the spatial distribution of Populus euphratica Oliv. fine roots (D ≤ 2 mm) and the relationship with groundwater depth and soil water content. Fine roots and soil samples were collected by the artificial trench profile method. Results showed that:(1) In the horizontal direction (range of 550 cm), fine root length density (RLD), fine root surface area density (SAD), and fine root mass density (RMD) of< P. euphratica changed insignificantly with distance from the tree trunk. (2) In the vertical direction, there were almost no fine roots in the top layer of the soil profile. With the increase in soil depth, both RLD and RMD exhibited increasing trends at first, and then showed decreasing trends. We found high fine specific root length (SRL) and specific root area (SRA) of< P. euphratica at the 280 cm soil depth. (3) RLD and RMD showed positive correlations with soil moisture content of the upper soil (0-180 cm), but exhibited spatial heterogeneities with soil moisture at deeper layers. These results revealed that P. euphratica roots were restricted by soil water conditions in the upper soil, and the fine roots in deeper soil were mainly affected by groundwater. The P. euphratica root system not only demonstrated the ability to develop into the deep moist soil, but also showed a strong horizontal expansion capability to cope with drought environments. This study provides a reference for understanding the adaptation mechanism of P. euphratica to extremely arid environments.
  • [1]
    Leppälammi-Kujansuu J, Aro L, Salemaa M, Hansson K, Kleja DB, Helmisaari HS. Fine root longevity and carbon input into soil from below-and aboveground litter in climatically contrasting forests[J]. For Ecol Manage, 2014, 326(8):79-90.
    [2]
    Iversen CM. Using root form to improve our understanding of root function[J]. New Phytol, 2014, 203(3):707-709.
    [3]
    杨秀云, 郭平毅, 韩有志, 宁鹏, 武小钢. 采伐干扰对林下草本根系生物量与土壤环境异质性关系的影响[J]. 植物科学学报, 2012, 30(6):545-551.

    Yang XY, Guo PY, Han YZ, Ning P, Wu XG. Effects of cutting disturbance on spatial heterogeneity between root biomass of the herb and soil environment in Larix principis-rupprechtii forests in Guandi Mountain[J]. Plant Science Journal, 2012, 30(6):545-551.
    [4]
    Long YQ, Kong DL, Chen ZX, Zeng H. Variation of the linkage of root function with root branch order[J]. PloS One, 2013, 8(2):e57153.
    [5]
    Fitter AH. Characteristics and functions of root systems[C]//Waisel Y, Eshel A, Kafkafi U, eds. Plant Roots:The Hidden Half. New York:Marcel Dekker, 1996:1-20.
    [6]
    韩路, 王家强, 王海珍, 牛建龙, 于军. 塔里木荒漠绿洲过渡带主要种群生态位与空间格局分析[J]. 植物科学学报, 2016, 34(3):352-360.

    Han L, Wang JQ, Wang HZ, Niu JL, Yu J. Niche and spatial distribution pattern analysis of the main populations of the Tarim desert-oasis ecotone[J]. Plant Science Journal, 2016, 34(3):352-360.
    [7]
    王海珍, 陈加利, 韩路, 徐雅丽, 贾文锁. 地下水位对胡杨(Populus euphratica)和灰胡杨(Populus pruinosa)叶绿素荧光光响应与光合色素含量的影响[J]. 中国沙漠, 2013, 33(4):1054-1063.

    Wang HZ, Chen JL, Han L, Xu YL, Jia WS. Effects of groundwater levels on photosynthetic pigments and light response of chlorophyⅡ fluorescence parameters of Populus euphratica and Populus pruinosa[J]. Journal of Desert Research, 2013, 33(4):1054-1063.
    [8]
    周多多, 蒋少伟, 吴桂林, 李君. 不同水分条件下胡杨光响应曲线拟合模型比较[J]. 植物科学学报, 2017,35(3):406-412.

    Zhou DD, Jiang SW, Wu GL, Li J. Comparison of light response models of photosynthesis in Populus euphratica Oliv. grown under contrasting groundwater conditions[J]. Plant Science Journal, 2017, 35(3):406-412.
    [9]
    任志国, 陈亚鹏, 李卫红, 刘树宝. 地下水埋深对塔里木河下游建群种植物叶片d13C值的影响[J]. 草业学报, 2014, 23(2):76-82.

    Ren ZG, Chen YP, Li WH, Liu SB. The effect of groundwater depth on the d13C value of constructive species leaf in the lower reaches of the Tarim River[J]. Acta Prataculturae Sinica, 2014, 23(2):76-82.
    [10]
    Pei ZQ, Xiao CW, Dong D, Zhang SR. Comparison of the fine root dynamics of Populus euphratica forests in diffe-rent habitats in the lower reaches of the Tarim River in Xinjiang, China, during the growing season[J]. J Forest Res-Jpn, 2012, 17(4):343-351.
    [11]
    夏延国,董芳宇,吕爽,王键铭,井家林,李景文. 极端干旱区胡杨细根的垂直分布和季节动态[J]. 北京林业大学学报, 2015, 37(7):37-44.

    Xia YG, Dong FY, Lü S, Wang JM, Jing JL, Li JW. Vertical distribution and seasonal dynamics of fine roots in Populus euphratica plantation in the extremely drought area[J]. Journal of Beijing Forestry University, 2015, 37(7):37-44.
    [12]
    司建华, 冯起, 李建林, 赵健. 荒漠河岸林胡杨吸水根系空间分布特征[J]. 生态学杂志, 2007, 26(1):1-4.

    Si JH, Feng Q, Li JL, Zhao J. Spatial distribution pattern of Populus euphratica fine roots in desert riparian forest[J]. Chinese Journal of Ecology, 2007, 26(1):1-4.
    [13]
    黄晶晶, 井家林, 曹德昌, 张楠, 李景文, 夏延国, 吕爽. 不同林龄胡杨克隆繁殖根系分布特征及其构型[J]. 生态学报, 2013,33(14):4331-4342.

    Huang JJ, Jing JL, Cao DC, Zhang N, Li JW, Xia YG, Lü S. Cloning root system distribution and architecture of different forest age Populus euphratica in Ejina Oasis[J]. Acta Ecologica Sinica, 2013, 33(14):4331-4342.
    [14]
    冯起, 司建华, 李建林, 席海洋. 胡杨根系分布特征与根系吸水模型建立[J]. 地球科学进展, 2008, 23(7):765-772.

    Feng Q, Si JH, Li JL, Xi HY. Feature of root distribution of Populus euphratica and its water uptake model in extreme arid region[J]. Advances in Earth Science, 2008, 23(7):765-772.
    [15]
    Zhu YH, Ren LL, Skaggs TH, Lyu HS, Yu ZB, Wu YQ, Fang XQ. Simulation of Populus euphratica root uptake of groundwater in an arid woodland of the Ejina Basin, China[J]. Hydrol Processes, 2009, 23(17):2460-2469.
    [16]
    苏里坦, 古力米热·哈那提, 刘迁迁. 塔里木河下游胡杨林根系吸水模型[J]. 干旱区地理, 2017, 40(1):102-107.

    Su LT, Hanati G, Liu QQ. Root water uptake model of Populus euphratica in the lower reaches of Tarim River[J]. Arid Land Geography, 2017, 40(1):102-107.
    [17]
    吕爽, 张现慧, 张楠, 夏延国, 井家林, 李景文. 胡杨幼苗根系生长与构型对土壤水分的响应[J]. 西北植物学报, 2015, 35(05):1005-1012.

    Lü S, Zhang XH, Zhang N, Xia YG, Jing JL, Li JW. Response of root growth and architecture of Populus euphratica seedling on soil water[J]. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(5):1005-1012.
    [18]
    李建林, 冯起, 司建华, 常宗强, 苏永红, 席海洋. 极端干旱地区胡杨林根系分布的非线性分析[J]. 北京林业大学学报, 2007, 29(6):109-114.

    Li JL, Feng Q, Si JH,Chang ZQ, Su YH, Xi HY. Nonli-near analysis of root distribution of Populus euphratica forests in the extremely arid region-Ejina, Inner Mongolia in northern China[J]. Journal of Beijing Forestry University, 2007, 29(6):109-114.
    [19]
    木巴热克·阿尤普, 陈亚宁, 李卫红, 郝兴明, 马建新, 苏芮. 极端干旱环境下的胡杨细根分布与土壤特征[J]. 中国沙漠, 2011, 31(6):1449-1458.

    Ayup M, Chen YN, Li WH, Hao XM, Ma JX, Su R. Fine root distribution of Populus euphratica Oliv. and its relations with soil factors under extremely arid environment[J]. Journal of Desert Research, 2011, 31(6):1449-1458.
    [20]
    叶茂, 徐海量, 王晓峰, 申瑞新. 塔里木河下游阿拉干断面胡杨根系空间分布规律研究[J]. 西北植物学报, 2011, 31(4):801-807.

    Ye M, Xu HL, Wang XF, Shen RX. Spatial distribution characteristics of root system of Populus euphratica in the Algan transection of the lower Tarim River[J]. Acta Bota-nica Boreali-Occidentalia Sinica, 2011, 31(4):801-807.
    [21]
    付爱红, 陈亚宁, 李卫红. 极端干旱区旱生芦苇叶水势变化及其影响因子研究[J]. 草业学报, 2012, 21(3):163-170.

    Fu AH, Chen YN, Li WH. Analysis on dominant factors influencing water potential of Phragmites australis in extremely arid areas[J]. Acta Prataculturae Sinica, 2012, 21(3):163-170.
    [22]
    李建林, 冯起, 司建华. 极端干旱区胡杨吸水根系的分布与模拟研究[J]. 干旱区地理, 2008, 31(1):97-101.

    Li JL, Feng Q, Si JH. Distribution of uptake roots of Populus euphratica Oliv. in extreme arid region, China[J]. Arid Land Geography, 2008, 31(1):97-101.
    [23]
    Imada S, Taniguchi T, Acharya K, Yamanaka N. Vertical distribution of fine roots of Tamarix ramosissima in an arid region of southern Nevada[J]. J Arid Environ, 2013, 92:46-52.
    [24]
    Zhou ZC, Shangguan ZP. Vertical distribution of fine roots in relation to soil factors in Pinus tabulaeformis Carr. forest of the Loess Plateau of China[J]. Plant Soil, 2007, 291(1-2):119-129.
    [25]
    王文, 蒋文兰, 谢忠奎, 张德罡, 宫旭胤, 寇江涛. 黄土丘陵地区唐古特白刺根际土壤水分与根系分布研究[J]. 草业学报, 2013, 22(1):20-28.

    Wang W, Jiang WL, Xie ZK, Zhang DG, Gong XY, Kou JT. Study on soil water in rhizosphere and root system distribution of Nitraria tangutorum on Loess Plateau[J]. Acta Prataculturae Sinica, 2013, 22(1):20-28.
    [26]
    刘健, 贺晓, 包海龙, 周成军. 毛乌素沙地沙柳细根分布规律及与土壤水分分布的关系[J]. 中国沙漠, 2010, 30(6):1362-1366.

    Liu J, He X, Bao HL, Zhou CJ. Distribution of fine root of Salix psammophila and its relationship with soil moisture in Mu Us Sandland[J]. Journal of Desert Research, 2010, 30(6):1362-1366.
    [27]
    Tron S, Perona P, Gorla L, Schwarz M, Laio F, Ridolfi L. The signature of randomness in riparian plant root distributions[J]. Geophys Res Lett, 2015, 42(17):7098-7106.
    [28]
    Xu GQ, Yu DD, Li Y. Patterns of biomass allocation in Haloxylon persicum woodlands and their understory herbaceous layer along a groundwater depth gradient[J]. Forest Ecol Manag, 2017, 395:37-47.
    [29]
    刘波, 曾凡江, 郭海峰, 曾杰. 骆驼刺幼苗生长特性对不同地下水埋深的响应[J]. 生态学杂志, 2009, 28(2):237-242.

    Liu B, Zeng FJ, Guo HF, Zeng J. Effects of groundwater table on growth characteristics of Alhagi sparsifolia Shap. seedlings[J]. Chinese Journal of Ecology, 2009, 28(2):237-242.
    [30]
    Bauhus J, Khanna PK, Menden N. Aboveground and belowground interactions in mixed plantations of Eucalyptus globulus and Acacia mearnsii[J]. Can J Forest Res, 2000, 30(12):1886-1894.
    [31]
    Berntson GM. Modelling root architecture:are there tradeoffs between efficiency and potential of resource acquisition?[J]. New Phytol, 1994, 127(3):483-493.
    [32]
    Jongrungklang N, Toomsan B, Vorasoot N, Jogloy S, Boote KJ, Hoogenboom G, Patanothai A. Rooting traits of peanut genotypes with different yield responses to pre-flowering drought stress[J]. Field Crop Res, 2011, 120(2):262-270.
    [33]
    张现慧, 钟悦鸣, 谭天逸, 吕爽, 王健铭, 李景文. 土壤水分动态对胡杨幼苗生长分配策略的影响[J]. 北京林业大学学报, 2016, 38(5):92-99.

    Zhang XH, Zhong YM, Tan TY, Lü S, Wang JM, Li JW. Effect of soil moisture dynamics on growth and allocation strategy of Populus euphratica seedlings[J]. Journal of Beijing Forestry University, 2016, 38(5):92-99.
    [34]
    February EC, Higgins SI. The distribution of tree and grass roots in savannas in relation to soil nitrogen and water[J]. S Afr J Bot, 2010, 76(3):517-523.
    [35]
    Jian SQ, Zhao CY, Fang SM, Yu K. The distribution of fine root length density for six artificial afforestation tree species in Loess Plateau of Northwest China[J]. Forest Syst, 2015, 24(1):3.
  • Related Articles

    [1]Sun Linjuan, Liu Taoli, Liu Hai, Yuan Dingyang, Yang Xulei, Xu Yusheng, Chen Siyang, Zeng Jianguang, Huang Yubo, Tan Yanning. Effect of ascorbic acid oxidation inhibition on growth of Oryza sativa L. seedlings under abscisic acid (ABA) treatment[J]. Plant Science Journal, 2024, 42(6): 806-814. DOI: 10.11913/PSJ.2095-0837.23378
    [2]Sun De-Zhi, Han Xiao-Ri, Peng Jing, Fan Fu, Song Gui-Yun, Yang Heng-Shan. Effects of exogenous nitric oxide and salicylic acid on membrane peroxidation and the ascorbate-glutathione cycle in leaves of Lycopersicon esculentum seedlings under NaCl stress[J]. Plant Science Journal, 2018, 36(4): 612-622. DOI: 10.11913/PSJ.2095-0837.2018.40612
    [3]YAN Zhi-Ming, SUN Jin, GUO Shi-Rong, WEI Yue, HU De-Long, WANG Quan-Zhi. Effects of Exogenous Proline on the Ascorbate-Glutathione Cycle in Roots of Cucumis melo Seedlings under Salt Stress[J]. Plant Science Journal, 2014, 32(5): 502-508. DOI: 10.11913/PSJ.2095-0837.2014.50502
    [4]WEI Jin-Chi, YANG Hai-Ling. Functional Divergence of Two Glutathione Peroxidase Genes in Oryza sativa[J]. Plant Science Journal, 2013, 31(1): 64-72. DOI: 10.3724/SP.J.1142.2013.10064
    [5]QIU Zong-Bo, LI Fang-Min, WANG Fang, YUE Ming. Effects of CO2 Laser on Glutathione-dependent Antioxidative System in Wheat Seedling under Drought Stress[J]. Plant Science Journal, 2008, 26(4): 402-406.
    [6]LI Cong-Qiang, LIN Gang, LI Ke-Xiu, SONG Yun-Chun, XIONG Zhi-Yong, HE Guang-Yuan. Cytological Identification on the Interspecific Hybrid of Zea mays and Zea diploperennis[J]. Plant Science Journal, 2006, 24(1): 1-5.
    [7]DONG Gao-Feng, CHEN Yi-Zhu, LI Geng-Guang, HUANG Tao, YANG Cheng-Wei. Xanthophyll Cycle and Non-Radiative Energy Dissipation in Sun and Shade Plants[J]. Plant Science Journal, 2001, 19(2): 128-134.
    [8]Li Minghong, Yu Mingjian, Chen Qichang. ACCUMULATION AND CYCLING OF CALCIUM IN AN EVERGREEN BROAD-LEAVED FOREST DOMINATED BY CYCLOBALANOPSIS GLAUCA IN SE, CHINA[J]. Plant Science Journal, 2000, 18(2): 131-137.
    [9]Zhao Bosheng, Mo Hua. DETOXICATION OF ASCORBIC ACID AND MOLYSITE ON THE ROOT GROWTH OF GARLIC UNDER CADMIUM POLLUTION[J]. Plant Science Journal, 1997, 15(2): 167-172.
    [10]Lin Peng. BIOMASS AND ELEMENT CYCLE OF KANDELIA FOREST, CHINA[J]. Plant Science Journal, 1989, 7(3): 251-257.
  • Cited by

    Periodical cited type(9)

    1. 徐萌,王亚楠,李婷婷,赵新英. 拟南芥根中细胞器特异标记蛋白质的定位观察. 山东农业大学学报(自然科学版). 2025(01): 125-132 .
    2. 朱钰雅,倪雅迪,徐羚欣,肖平,段金廒. 中药蛋白结构与功能研究方法与策略探讨. 中国中药杂志. 2024(07): 1705-1716 .
    3. 陈甘露,颜彦,孟宪伟,付莉莉,邱先进,丁泽红,胡伟. 木薯MebZIP2基因克隆及其功能分析. 福建农业学报. 2024(02): 137-146 .
    4. 代蕊,陈崎,爽爽,张岩,张志强,米福贵. 紫花苜蓿MsJAR1基因克隆及表达分析. 草地学报. 2024(05): 1370-1377 .
    5. 韩青,张大伟. 植物蛋白的亚细胞定位观察虚拟仿真实验. 实验科学与技术. 2024(04): 84-89 .
    6. 韦鎔宜,段鹏,李培兰,罗丹,史国民,代吴斌,李凤珍,何涛. 水母雪兔子通气组织形成相关基因SmPAD4的克隆及表达分析. 广西植物. 2024(12): 2265-2278 .
    7. 黄馨田,韩慧杰,李宇琛,刘亚玲,张雅荣,赵彦. 蒙农杂种冰草AcdMYB1基因克隆及表达分析. 草地学报. 2023(08): 2334-2342 .
    8. 李佳楠,高兴泉,李卓,滕小华,黄斌,张继成,唐友. 四种机器学习算法预测大豆蛋白质定位对比研究. 大豆科学. 2022(03): 337-344 .
    9. 苏倩,杜文宣,马琳,夏亚迎,李雪,祁智,庞永珍. 紫花苜蓿MsCIPK2的克隆及功能分析. 中国农业科学. 2022(19): 3697-3709 .

    Other cited types(40)

Catalog

    Article views (810) PDF downloads (1045) Cited by(49)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return