Advance Search
Xu Ji-Lei, Wang Xing-Zhong, Fan Ji-Biao. Changes in physiology and photosynthesis of Glycine soja Sieb. et Zucc. induced by salt stress[J]. Plant Science Journal, 2022, 40(6): 829-838. DOI: 10.11913/PSJ.2095-0837.2022.60829
Citation: Xu Ji-Lei, Wang Xing-Zhong, Fan Ji-Biao. Changes in physiology and photosynthesis of Glycine soja Sieb. et Zucc. induced by salt stress[J]. Plant Science Journal, 2022, 40(6): 829-838. DOI: 10.11913/PSJ.2095-0837.2022.60829

Changes in physiology and photosynthesis of Glycine soja Sieb. et Zucc. induced by salt stress

Funds: 

This work was supported by a grant from the National Natural Science Foundation of China (31720103905).

More Information
  • Received Date: May 30, 2022
  • Revised Date: July 05, 2022
  • Available Online: January 12, 2023
  • Annual vine Glycine soja Sieb. et Zucc. is considered the ancestor of cultivated soybean (G. max (L.)Merr.), but exhibits greater genetic diversity. At present, the G. soja growth environment is under high-salt stress, but its photosynthetic performance under such conditions remains unknown. In this study, we investigated the effects of salt stress on the photochemical activity of G. soja photosynthesis based on prompt chlorophyll fluorescence and modulated 820-nm reflection. Results showed that chlorophyll a content was significantly reduced, and the chlorophyll fluorescence induction transient (OJIP) curve was significantly changed in seedling leaves after salt stress treatment. The JIP-test parameters, including performance indices such as PIABS and PItotal and energy flux parameters such as RC/ABS, TRo/RC, ETo/RC, and REo/RC, were decreased, while DIo/RC was increased. Quantum yield and efficiency parameters, such as ψEo, φEo, δRo, and φRo, were decreased in seedling leaves exposed to salt stress. The shape of the MR/MRO ratio curve changed after salt stress treatment. Furthermore, changes in the MR/MRO ratio showed high correlation to the time intervals of chlorophyll fluorescence. Salt stress led to membrane lipid peroxidation in the seedling leaves, resulting in a significant increase in MDA content, while relative water content was significantly decreased. Thus, the seedling leaves adapted to salt stress by significantly increasing osmotic regulators and antioxidant enzyme activities.
  • [1]
    隋利, 易家宁, 王康才, 李羽青. 不同氮素形态及其配比对盐胁迫下紫苏生理特性的影响[J]. 生态学杂志, 2018, 37(11):3277-3283.

    Sui L, Yi JN, Wang KC, Li YQ. Effects of different forms and ratios of nitrogen on physiological characteristics of Perilla frutescens (L.) Britt under salt stress[J]. Chinese Journal of Ecology, 2018, 37(11):3277-3283.
    [2]
    祁伟亮, 孙万仓, 马骊. 活性氧参与调控植物生长发育和胁迫应激响应机理的研究进展[J]. 干旱地区农业研究, 2021, 39(3):69-81.

    Qi WL, Sun WC, Ma L. Research progress of reactive oxygen species involved in regulating plant growth and development and the mechanisms of stress response[J]. Agricultural Research in the Arid Areas, 2021, 39(3):69-81.
    [3]
    杜卓, 路运才. 玉米抗旱化学调控技术研究进展[J]. 中国农学通报, 2020, 36(33):7-11.

    Du Z, Lu YC. Chemical regulation technology of drought resistance in maize:a review[J]. Chinese Agricultural Science Bulletin, 2020, 36(33):7-11.
    [4]
    张利霞, 常青山, 侯小改, 刘伟, 李晓鹏, 等. NaCl胁迫对夏枯草幼苗抗氧化能力及光合特性的影响[J]. 草业学报, 2017, 26(11):167-175.

    Zhang LX, Chang QS, Hou XG, Liu W, Li XP, et al. Effects of NaCl stress on antioxidant capacity and photosynthetic characteristics of Prunella vulgaris seedlings[J]. Acta Prataculturae Sinica, 2017, 26(11):167-175.
    [5]
    Martinez V, Mestre TC, Rubio F, Girones-Vilaplana A, Moreno DA, et al. Accumulation of flavonols over hydroxycinnamic acids favors oxidative damage protection under abiotic stress[J]. Front Plant Sci, 2016, 7:838.
    [6]
    马婷, 滕玉瑾, 李翠祥, 杨颖丽. 盐胁迫下黄花补血草幼苗ROS代谢酶活性的变化[J]. 植物生理学报, 2016, 52(2):177-186.

    Ma T, Teng YJ, Li CX, Yang YL. Changes of ROS meta-bolizing enzyme activities in Limonium aureum seedlings under salinity stress[J]. Plant Physiology Journal, 2016, 52(2):177-186.
    [7]
    杨伟, 刘文辉, 马祥, 马晖玲. 干旱胁迫对2种不同抗旱性老芒麦幼苗ROS积累及抗氧化系统的影响[J]. 草地学报, 2020, 28(3):684-693.

    Yang W, Liu WH, Ma X, Ma HL. Effects of ROS accumulation and antioxidant system in two different drought resistant Elymus sibiricus under drought stress[J]. Acta Agrestia Sinica, 2020, 28(3):684-693.
    [8]
    Sofo A, Scopa A, Nuzzaci M, Vitti A. Ascorbate peroxidase and catalase activities and their genetic regulation in plants subjected to drought and salinity stresses[J]. Int J Mol Sci, 2015, 16(6):13561-13578.
    [9]
    陈晓晶, 徐忠山, 赵宝平, 米俊珍, 严威凯, 刘景辉. 盐胁迫对燕麦根系呼吸代谢、抗氧化酶活性及产量的影响[J]. 生态学杂志, 2021, 40(9):2773-2782.

    Chen XJ, Xu ZS, Zhao BP, Mi JZ, Yan WK, Liu JH. Effects of salt stress on root respiratory metabolism, antioxidant enzyme activities, and yield of oats[J]. Chinese Journal of Ecology, 2021, 40(9):2773-2782.
    [10]
    Hasanuzzaman M, Nahar K, Hossain MS, Mahmud JA, Rahman A, et al. Coordinated actions of glyoxalase and antioxidant defense systems in conferring abiotic stress tolerance in plants[J]. Int J Mol Sci, 2017, 18(1):200.
    [11]
    Mehta P, Jajoo A, Mathur S, Bharti S. Chlorophyll a fluorescence study revealing effects of high salt stress on Photosystem Ⅱ in wheat leaves[J]. Plant Physiol Biochem, 2010, 48(1):16-20.
    [12]
    Porcel R, Redondo-Gómez S, Mateos-Naranjo E, Aroca R, Garcia R, Ruiz-Lozano JM. Arbuscular mycorrhizal symbiosis ameliorates the optimum quantum yield of pho-tosystem Ⅱ and reduces non-photochemical quenching in rice plants subjected to salt stress[J]. J Plant Physiol, 2015, 185:75-83.
    [13]
    Schansker G, Tóth SZ, Strasser RJ. Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystem Ⅰ in the Chl a fluorescence rise OJIP[J]. Biochim Biophys Acta, 2005, 1706(3):250-261.
    [14]
    Strasser RJ. The Fo and the O-J-I-P fluorescence rise in higher plants and algae[M]/Zhang WJ, Huang ZL, Wang Q, Guan YN. Effects of low temperature on leaf anatomy and photosynthetic perfor-mance in different genotypes of wheat following a rice crop[J]. Int J Agric Biol, 2015, 17(6):1165-1171.
    [15]
    Zhang WJ, Huang ZL, Wang Q, Guan YN. Effects of low temperature on leaf anatomy and photosynthetic perfor-mance in different genotypes of wheat following a rice crop[J]. Int J Agric Biol, 2015, 17(6):1165-1171.
    [16]
    Strasser RJ, Tsimilli-Michael M, Qiang S, Goltsev V. Simu-ltaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis[J]. Biochim Biophys Acta, 2010, 1797(6-7):1313-1326.
    [17]
    Li P, Li PM, Ma FW, Goltsev V. Photosynthetic perfor-mance during leaf expansion in Malus micromalus probed by chlorophyll a fluorescence and modulated 820 nm reflection[J]. J Photochem Photobiol B, 2014, 137:144-150.
    [18]
    Fujita R, Ohara M, Okazaki K, Shimamoto Y. The extent of natural cross-pollination in wild soybean (Glycine soja)[J]. J Hered, 1997, 88(2):124-128.
    [19]
    Li YH, Li W, Zhang C, Yang L, Chang RZ, et al. Genetic diversity in domesticated soybean (Glycine max) and its wild progenitor (Glycine soja) for simple sequence repeat and single-nucleotide polymorphism loci[J]. New Phytol, 2010, 188(1):242-253.
    [20]
    Jiao Y, Bai ZZ, Xu JY, Zhao ML, Khan Y, et al. Metabolomics and its physiological regulation process reveal the salt-tolerant mechanism in Glycine soja seedling roots[J]. Plant Physiol Biochem, 2018, 126:187-196.
    [21]
    Zhang JL, Wang JX, Jiang W, Liu J, Yang S, et al. Identification and analysis of NaHCO3 stress responsive genes in wild soybean (Glycine soja) roots by RNA-seq[J]. Front Plant Sci, 2016, 7:1842.
    [22]
    丁春霞, 周峰, 华春. 盐胁迫下植物光系统Ⅱ的光谱学和蛋白质亚基研究进展[J]. 天津农业科学, 2016, 22(5):5-7.

    Ding CX, Zhou F, Hua C. Advances in spectroscopy and protein subunits of photosystem Ⅱ in plant under salt stress[J]. Tianjin Agricultural Sciences, 2016, 22(5):5-7.
    [23]
    Hu ZR, Fan JB, Chen K, Amombo E, Chen L, Fu JM. Effects of ethylene on photosystem Ⅱ and antioxidant enzyme activity in Bermuda grass under low temperature[J]. Photosynth Res, 2016, 128(1):59-72.
    [24]
    Fan JB, Ren J, Zhu WX, Amombo E, Fu JM, Chen L. Antioxidant responses and gene expression in bermudagrass under cold stress[J]. J Amer Soc Hort Sci, 2015, 139(6):699-705.
    [25]
    汤章城. 现代植物生理学实验指南[M]. 北京:科学出版社, 1999:300-380.
    [26]
    滕志远, 张会慧, 代欣, 胡举伟, 张秀丽,等.干旱对桑树叶片光系统Ⅱ活性的影响[J]. 浙江农业学报,2016,28(1):1-8.

    Teng ZY, Zhang HH, Dai X, Hu JW, Zhang XL, et al. Effects of drought stress on PSⅡ photochemical activity in leaves of Morus alba[J]. Acta Agriculturae Zhejiangensis, 2016,28(1):1-8.
    [27]
    姬语潞, 杨维, 李涵, 曹桦, 陆琳, 等. 铁皮石斛叶色突变体的叶绿体超微结构、光合色素和叶绿素荧光特性的研究[J]. 植物科学学报, 2020, 38(2):260-268.

    Ji YL, Yang W, Li H, Cao H, Lu L, et al. Study on chloroplast ultrastructure, photosynthetic pigments, and chlorophyll fluorescence characteristics of leaf color mutants in Dendrobium officinale Kimura et Migo[J]. Plant Science Journal, 2020, 38(2):260-268.
    [28]
    孙云飞, 张文明, 巢建国, 谷巍, 陆奇杰. 盐胁迫对茅苍术叶绿素含量及叶绿素荧光参数的影响[J]. 江苏农业科学, 2020, 48(4):146-149.

    Sun YF, Zhang WM, Chao JG, Gu W, Lu QJ. Impacts of salt stress on chlorophyll contents and chlorophyll fluorescence parameters of Atractylodes lancea[J]. Jiangsu Agricultural Sciences,2020, 48(4):146-149.
    [29]
    Ohtsuka T, Ito H, Tanaka A. Conversion of chlorophyll b to chlorophyll a and the assembly of chlorophyll with apoproteins by isolated chloroplasts[J]. Plant Physiol, 1997, 113(1):137-147.
    [30]
    王玉萍, 郜春晓, 王盛祥, 何晓童. 低温弱光胁迫下芸豆叶片光抑制与类囊体膜脂构成变化[J]. 草业学报, 2020, 29(8):116-125.

    Wang YP, Gao CX, Wang SX, He XT. Changes in photoinhibition and fatty acid composition in the thylakoid membrane of kidney bean leaves under low temperature and weak light stress[J]. Acta Prataculturae Sinica, 2020, 29(8):116-125.
    [31]
    Guo YJ, Lu YP, Goltsev V, Strasser RJ, Kalaji HM, et al. Comparative effect of tenuazonic acid, diuron, bentazone, dibromothymoquinone and methyl viologen on the kinetics of Chl a fluorescence rise OJIP and the MR820 signal[J]. Plant Physiol Bioch, 2020, 156:39-48.
    [32]
    Strauss AJ, Krüger GHJ, Strasser RJ, van Heerden PDR. Ranking of dark chilling tolerance in soybean genotypes probed by the chlorophyll a fluorescence transient O-J-I-P[J]. Environ Exp Bot, 2006, 56(2):147-157.
    [33]
    刘晓洲, 郭浩轩, 卓定龙, 邓演文, 曾凤. 干旱复水对白姜花光合和叶绿素荧光参数的影响[J]. 中国农学通报, 2021, 37(34):84-89.

    Liu XZ, Guo HX, Zhuo DL, Deng YW, Zeng F. Effects of drought and rewatering on photosynthesis and chlorophyll fluorescence of Hedychium coronarium[J]. Chinese Agricultural Science Bulletin, 2021, 37(34):84-89.
    [34]
    张菂, 陈昌盛, 李鹏民, 马锋旺. 利用快速荧光、延迟荧光和820 nm光反射同步测量技术探讨干旱对平邑甜茶叶片光合机构的伤害机制[J]. 植物生理学报, 2013, 49(6):551-560.

    Zhang D, Chen CS, Li PM, Ma FW. Effects of drought on the photosynthetic apparatus in Malus hupehensis leaves explored by simultaneous measurement of prompt fluorescence, delayed fluorescence and modulated light reflection at 820 nm[J]. Plant Physiology Journal, 2013, 49(6):551-560.
    [35]
    孙文君, 江晓慧, 付媛媛, 申孝军, 高阳, 王兴鹏. 盐分胁迫对棉花幼苗叶片叶绿素荧光参数的影响[J]. 灌溉排水学报, 2021, 40(7):23-28.

    Sun WJ, Jiang XH, Fu YY, Shen XJ, Gao Y, Wang XP. The effects of salt stress on chlorophyll fluorescence of cotton seedling leaves[J]. Journal of Irrigation and Drai-nage, 2021, 40(7):23-28.
    [36]
    李利, 李宏. 干旱和盐胁迫对白榆叶片光系统Ⅱ活力的影响[J]. 东北林业大学学报, 2011, 39(9):31-33.

    Li L, Li H. Effects of NaCl and polyethylene glycol on photosystem Ⅱ activity in Ulmus pumila[J]. Journal of Nor-theast Forestry University, 2011, 39(9):31-33.
    [37]
    Sinha V, Pakshirajan K, Chaturvedi R. Chromium tole-rance, bioaccumulation and localization in plants:an overview[J]. J Environ Manage, 2018, 206:715-730.
    [38]
    Dąbrowski P, Kalaji MH, Baczewska AH, Paẃluskiewicz B, Mastalerczuk G, et al. Delayed chlorophyll a fluorescence, MR 820, and gas exchange changes in perennial ryegrass under salt stress[J]. J Lumines, 2018, 183:322-333.
    [39]
    El Sabagh A, Hossain A, Islam S, Barutcular C, Hussain S, et al. Drought and salinity stresses in barley:consequences and mitigation strategies[J]. Aust J Crop Sci, 2019, 13(6):810-820.
    [40]
    Huang S, Zuo T, Ni WZ. Important roles of glycinebetaine in stabilizing the structure and function of the photosystem Ⅱ complex under abiotic stresses[J]. Planta, 2020, 251(2):36.
  • Related Articles

    [1]HU Guang-ming, XIA Wen-juan, ZHENG Li, RAO Hang-kong, LEI Ming, WANG Jian, ZHAO Ting-ting, LI Zuo-zhou, ZHONG Cai-hong. Investigation and fruit genetic diversity analysis of wild Actinidia germplasm resources in Tongshan County, Hubei Province[J]. Plant Science Journal, 2021, 39(6): 620-631. DOI: 10.11913/PSJ.2095-0837.2021.60620
    [2]Chen Mei-Yan, Zhao Ting-Ting, Liu Xiao-Li, Han Fei, Zhang Peng, Zhong Cai-Hong. Factor analysis and comprehensive evaluation of fruit quality of ‘Jinyan’ kiwifruit (Actinidia eriantha×Actinidia chinensis)[J]. Plant Science Journal, 2021, 39(1): 85-92. DOI: 10.11913/PSJ.2095-0837.2021.10085
    [3]WANG Rong, HE Zhi-Chong, FANG Xue-Min, CHEN Dan-Li, WANG Qi, MENG Jia-Song, ZHAO Da-Qiu. Analysis of Phenotypic Diversity of Paeonia lactiflora Cultivars in Yangzhou[J]. Plant Science Journal, 2016, 34(6): 901-908. DOI: 10.11913/PSJ.2095-0837.2016.60901
    [4]YANG Xiao-Hui, ZHAO Xue-Li, GAO Xin-Fen. Morphological Variation and ITS Sequence Analysis of the Indigofera szechuensis Complex[J]. Plant Science Journal, 2015, 33(6): 727-733. DOI: 10.11913/PSJ.2095-0837.2015.60727
    [5]CAI Jun-Long, LU Jin-Qing, LI Qiang, GUO Sheng-Nan, DAI Yi. Analysis on Volatile Components of Caryophylli Flos from Different Habitats[J]. Plant Science Journal, 2015, 33(2): 251-258. DOI: 10.11913/PSJ.2095-0837.2015.20251
    [6]CHEN Sui-Qing, SONG Jun, CUI Can. Research and Evaluation on Chemical Fingerprints of Diterpenoids from Rabdosia rubescens[J]. Plant Science Journal, 2012, 30(5): 519-527. DOI: 10.3724/SP.J.1142.2012.50519
    [7]SHU Xiao, YANG Zhi-Ling, YANG Xu, DUAN Hong-Ping, YU Hua-Hui, LIU Ruo-Nan. Variation in Traits of Magnolia officinalis Seedlings from Different Provenances and Their Principal Component Analysis[J]. Plant Science Journal, 2010, 28(5): 623-630.
    [8]LI Ren-Wei, ZHANG Hung-Ta. Analysis on the Components of Seed Plant Flora in Sichuan Region[J]. Plant Science Journal, 2002, 20(5): 381-386.
    [9]Xiong Xiufang, Zhang Yinhua, Gong Fujun, Nan Peng, Yuan Ping, Wang Guoliang. STUDIES ON THE CHEMICAL CONSTITUENTS OF THE VOLATILE OIL FROM CHENOPODIUM AMBROSIOIDES L.GROWN IN HUBEI[J]. Plant Science Journal, 1999, 17(3): 244-248.
    [10]He Jingbiao, Sun Xiangzhong, Wang Huiqin, Zhong Yang, Huang Deshi. ANALYSES ON THE CHARACTERS OF THE GENUS OTTELIA (HYDROCHARITACEAE) IN CHINA[J]. Plant Science Journal, 1992, 10(2): 101-108.
  • Cited by

    Periodical cited type(24)

    1. 胡星,胡纪龙,张敏,刘娇,黄晓霞. 外源NO对盐胁迫下八角金盘叶片生理特性及解剖结构的影响. 西南林业大学学报(自然科学). 2025(01): 68-77 .
    2. 张伟溪,丁密,苏晓华,李爱平,王小江,余金金,李政宏,黄秦军,丁昌俊. 小叶杨×欧洲黑杨杂交F_1代生长及叶片解剖结构杂种优势分析与抗旱性评价. 南京林业大学学报(自然科学版). 2025(01): 46-58 .
    3. 赵莹. 叶形与叶色在园林景观设计中的应用. 分子植物育种. 2025(02): 622-627 .
    4. 邱彦芬,杨湉,吴裕. 基于叶片解剖结构评价不同倍性橡胶树无性系抗旱性. 热带农业科技. 2024(02): 61-67 .
    5. 萨其拉,张霞,朱琳,康萨如拉. 长期不同放牧强度下荒漠草原优势种无芒隐子草叶片解剖结构变化. 植物生态学报. 2024(03): 331-340 .
    6. 胡光明,肖涛,彭家清,李大卫,田华,王华玲,肖丽丽,程均欢,黄海雷,吴伟,钟彩虹. 基于叶片形态及显微特征评价12个猕猴桃栽培品种的抗旱性. 果树学报. 2024(05): 911-928 .
    7. 刘柯珍,何诚. 微观视角下防火树种特征研究动态. 西南林业大学学报(自然科学). 2024(03): 212-220 .
    8. 肖刚,赵峰,李世民,刘帅,路艳. 高速公路中央分隔带绿化植物对干旱胁迫的生理响应和抗旱性评价. 山东交通科技. 2024(03): 81-85 .
    9. 罗玲,刘伟,梁东,马一君,李然,吕秀兰. 不同架形对阳光玫瑰葡萄叶幕生态和高温下应逆生理的影响. 果树学报. 2024(12): 2444-2462 .
    10. 侯立伟,鲁绍伟,李少宁,赵娜,徐晓天. 城市绿化灌木耐旱性评价及灌溉制度研究进展. 世界林业研究. 2023(01): 45-51 .
    11. 孙一鑫,马乐乐,苗丽丽,何佳星,李建明. 基于光辐射时滞效应的温室番茄蒸腾量模型的构建. 西北农林科技大学学报(自然科学版). 2023(02): 83-92 .
    12. 何桥,向海洋,向芳,黄明,陈栋,向素琼,郭启高,梁国鲁,熊伟. 野生李用于巫山脆李砧木的适宜性研究. 西南大学学报(自然科学版). 2023(03): 74-87 .
    13. 马静,贺熙勇,陶亮,吴超,李志强,宫丽丹. 基于叶片解剖结构的澳洲坚果种质资源抗旱性评价. 热带作物学报. 2023(07): 1392-1399 .
    14. 仇杰,高超,罗洪发. 贵州西北喀斯特区古茶树叶片解剖结构及抗旱性评价. 西北植物学报. 2023(07): 1170-1184 .
    15. 董淑龙,马姜明,莫燕华,黎露. 红花檵木种质资源与应用研究综述. 广西林业科学. 2022(02): 290-297 .
    16. 董志君,高健洲,于晓南. 烯效唑对盆栽芍药生理特性及显微结构的影响. 北京林业大学学报. 2022(07): 117-125 .
    17. 王菲,程小毛,肖云龙,黄晓霞. 千家寨野生古茶树叶片解剖结构和化学组分计量特征对海拔梯度的适应. 生态学杂志. 2021(07): 1958-1968 .
    18. 景晨娟,陈雪峰,王端,季文章,武晓红. 三个李子品种叶片结构差异及其抗旱性分析. 北方园艺. 2021(15): 27-34 .
    19. 钟灶发,张利娟,高思思,彭婷. 干旱胁迫下4种柑橘砧木叶片细胞学特征及抗旱性比较. 园艺学报. 2021(08): 1579-1588 .
    20. 周荧,王頔,聂飞. 贵州省两个蓝莓品种组培苗和扦插苗干旱胁迫响应. 南方农业. 2021(20): 171-174+178 .
    21. 郭燕,张树航,李颖,张馨方,王广鹏. 中国板栗238份品种(系)叶片形态、解剖结构及其抗旱性评价. 园艺学报. 2020(06): 1033-1046 .
    22. 董章宏,尹亚梅,徐剑,李显煌,瞿绍宏,辛静,常晓勇,辛培尧. 滇杨雌、雄株茎叶解剖结构差异分析. 云南农业大学学报(自然科学). 2020(03): 502-510 .
    23. 谭莎,赖路伟,黄永芳,叶小萍,谭健彬,许雄坚. 3个山茶品种对干旱胁迫的生理响应. 亚热带植物科学. 2020(05): 335-339 .
    24. 崔杰,洪文君,刘俊,陈伟玉,何书奋,罗金环. 极小种群野生植物海南假韶子结构解剖特征研究. 广东农业科学. 2019(11): 31-36 .

    Other cited types(22)

Catalog

    Article views (264) PDF downloads (51) Cited by(46)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return