Citation: | XIE Ling-juan, YE Chu-yu, SHEN En-hui. Advances in plant genome construction[J]. Plant Science Journal, 2021, 39(6): 681-691. DOI: 10.11913/PSJ.2095-0837.2021.60681 |
[1] |
Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana[J]. Nature,2000,408(6814):796-815.
|
[2] |
Hamilton JP,Robin C. Advances in plant genome sequencing[J]. Plant J,2012,70(1):177-190.
|
[3] |
Neale DB,Martínez PJ,Delatorre AR,Montanari S,Wei XX. Novel insights into tree biology and genome evolution as revealed through genomics[J]. Annu Rev Plant Biol,2017,68:457-483.
|
[4] |
Isobe S,Shirasawa K,Hirakawa H. Challenges to genome sequence dissection in sweetpotato[J]. Breed Sci,2017,67(1):35-40.
|
[5] |
Thorsten L,Sophien K,Khaoula B. CRISPR crops:plant genome editing toward disease resistance[J]. Annu Rev Phytopatholy,2018,56(1):479-512.
|
[6] |
Negrao S,Oliveira MM,Jena KK,Mackill D. Integration of genomic tools to assist breeding in the japonica subspecies of rice[J]. Mol Breed,2008,22:159-168.
|
[7] |
Xu X,Pan SK,Cheng SF,Zhang B,Mu DS,et al. Genome sequence and analysis of the tuber crop potato[J].Nature,2011,475(7355):189-195.
|
[8] |
Feuillet C,Leach JE,Rogers J,Schnable PS,Eversole K.Crop genome sequencing:lessons and rationales[J].Trends Plant Sci,2011,16(2):77-88.
|
[9] |
Albert VA,Barbazuk WB,de Pamphilis CW,Der JP,Leebens-Mack J,et al. The Amborella genome and the evolution of flowering plants[J]. Science, 2013, 342(6165):1241089.
|
[10] |
Soundararajan P,Won SY,Kim JS. Insight on rosaceae family with genome sequencing and functional genomics perspective[J]. Biomed Res Int,2019:7519687.
|
[11] |
Ahmad R,Anjum MA,Balal RM. From markers to genome based breeding in horticultural crops:an overview[J].Phyton-Int J Exp Bo,2020,89(2):183-204.
|
[12] |
Michael TP,Jackson S. The first 50 plant genomes[J].Plant Genome,2013,6(2):1-7.
|
[13] |
Shendure J,Balasubramanian S,Church GM,Gilbert W,Rogers J,et al. DNA sequencing at 40:past,present and future[J]. Nature,2017,550(7676):345-535.
|
[14] |
Belser C,Istace B,Denis E,Dubarry M,Baurens FC,et al. Chromosome-scale assemblies of plant genomes using nanopore long reads and optical maps[J]. Nat Plants,2018,4(11):879-887.
|
[15] |
Chen F,Chen JH,Wang ZJ,Zhang JW,Li XJ,et al. Genomics:cracking the mysteries of walnuts[J]. J Genet,2019,98(2):1-3.
|
[16] |
Singh B,Salaria N,Thakur K,Kukreja S,Gautam S,et al. Functional genomic approaches to improve crop plant heat stress tolerance[J]. F1000Res,2019,8:1721.
|
[17] |
Song SH,Tian DM,Zhang Z,Hu SN,Yu J. Rice genomics:over the past two decades and into the future[J].Genom Proteomics Bioinformatics,2018,16(6):397-404.
|
[18] |
Isobe S,Shirasawa K,Hirakawa H. Current status in whole genome sequencing and analysis of Ipomoea spp.[J]. Plant Cell Rep,2019,38(11):1365-1371.
|
[19] |
Isobe S,Shirasawa K,Hirakawa H. Advances of whole genome sequencing in strawberry with NGS technologies[J]. Hort J,2020,89(2):108-114.
|
[20] |
Bolger ME,Weisshaar B,Scholz U,Stein N,Usadel B,et al. Plant genome sequencing-applications for crop improvement[J]. Curr Opin Biotechnol,2014,26:31-37.
|
[21] |
Yu J,Hu SN,Wang J,Wong GKS,Li SG,et al. A draft sequence of the rice genome(Oryza sativa L. ssp. indica)[J]. Science,2002,296(5565):79-92.
|
[22] |
Derelle E,Ferraz C,Rombauts S,Rouzé P,Worden AZ,et al. Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features[J]. Proc Natl Acad Sci USA,2006,103(31):11647-11652.
|
[23] |
Sanger F,Nicklen S,Coulson AR. DNA sequencing with chain-terminating inhibitors[J]. Proc Natl Acad Sci USA,1977,74(12):5463-5467.
|
[24] |
Ronaghi M,Mathias U,Pål N. A sequencing method based on real-time pyrophosphate[J]. Science,1998,281(5375):363-365.
|
[25] |
Avni R,Nave M,Barad O,Baruch K,Twardziok SO,et al. Wild emmer genome architecture and diversity elucidate wheat evolution and domestication[J]. Science,2017,357(6364):93-97.
|
[26] |
Mitros T,Session AM,James BT,Wu GHA,Belaffif MB,et al. Genome biology of the paleotetraploid perennial biomass crop Miscanthus[J]. Nat Commun,2020,5442(11):1-11.
|
[27] |
Gui S,Peng J,Wang XL,Wu ZH,Cao R,et al. Improving Nelumbo nucifera genome assemblies using high-resolution genetic maps and Bio Nano genome mapping reveals ancient chromosome rearrangements[J]. Plant J,2018,94(4):721-734.
|
[28] |
Eid J,Fehr A,Gray J,Luong K,Lyle J,et al. Real-time DNA sequencing from single polymerase molecules[J].Science,2009,323(5910):133-138.
|
[29] |
Hon T,Mars K,Young G,Tsai YC,Karalius JW,et al.Highly accurate long-read Hi Fi sequencing data for five complex genomes[J]. Sci Data,2020,7(1):1-11.
|
[30] |
Zhou Q,Tang D,Huang W,Yang ZM,Zhang Y,et al.Haplotype-resolved genome analyses of a heterozygous diploid potato[J]. Nat Genet,2020,52(10):1018-1023.
|
[31] |
Chen HT,Zeng Y,Yang YZ,Huang LL,Tang BL,et al.Allele-aware chromosome-level genome assembly and efficient transgene-free genome editing for the autotetraploid cultivated alfalfa[J]. Nat Commun,2020,11(1):2494.
|
[32] |
Sun XP,Jiao C,Schwaninger HD,Chao CT,Ma YM,et al. Phased diploid genome assemblies and pan-genomes provide insights into the genetic history of apple domestication[J]. Nat Genet,2020,52(12):1423-1432.
|
[33] |
Ma DN,Dong SS,Zhang SC,Wei XQ,Xie QJ,et al.Chromosome-level reference genome assembly provides insights into aroma biosynthesis in passion fruit(Passiflora edulis)[J]. Mol Ecol Resour,2020,21(3):955-968.
|
[34] |
Leggett RM, Clark MD. A world of opportunities with Nanopore sequencing[J]. J Exp Bot,2017,68(20):5419-5429.
|
[35] |
Wenger AM,Peluso P,Rowell WJ,Chang PC,Hall RJ,et al. Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome[J]. Nat Biotechnol,2019,37(10):1155-1162.
|
[36] |
Dudchenko O,Batra SS,Omer AD,Nyquist SK,Hoeger M,et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds[J]. Science,2017,356(6333):92-95.
|
[37] |
Bocklandt S,Hastie A,Cao H. Bionano genome mapping:high-throughput,ultra-long molecule genome analysis system for precision genome assembly and haploidresolved structural variation discovery[J]. Adv Exp Med Biol,2019,1129:97-118.
|
[38] |
Van de PY,Mizrachi E,Marchal K. The evolutionary significance of polyploidy[J]. Nat Rev,2017,18:411-424.
|
[39] |
Sun X,Zhu S,Li N,Cheng Y,Zhao J,et al. A chromosome-level genome assembly of garlic(Allium sativum)provides insights into genome evolution and Allicin biosynthesis[J]. Mol Plant,2020,13(9):1328-1339.
|
[40] |
Dodsworth S,Chase MW,Kelly LJ,Leich IJ,Macas J,et al. Genomic repeat abundances contain phylogenetic signal[J]. Syst Biol,2015,64(1):112-126.
|
[41] |
Qiu H,Price DC,Weber APM,Reeb V,Yang EC,et al.Adaptation through horizontal gene transfer in the cryptoendolithic red alga Galdieria phlegrea[J]. Curr Biol,2013,23(19):865-866.
|
[42] |
Gao XY,Zhang X,Chen W,Li J,Yang WJ,et al. Transcriptome analysis of Paris polyphylla var. yunnanensis illuminates the biosynthesis and accumulation of steroidal saponins in rhizomes and leaves[J]. Phytochemistry,2020,178(7):112460.
|
[43] |
The International Wheat Genome Sequencing Consortium(IWGSC). A chromosome-based draft sequence of the hexaploid bread wheat(Triticum aestivum)genome[J].Science,2014,345(6194):1251788.
|
[44] |
Zimin AV,Puiu D,Hall R,Kingan S,Clavijo BJ,Salzberg SL. The first near-complete assembly of the hexaploid bread wheat genome, Triticum aestivum[J]. GigaScience,2017,6(11):gix097.
|
[45] |
Stevens KA,Wegrzyn JL,Zimin A,Puiu D,Crepeau M,et al. Sequence of the sugar pine megagenome[J].Genet,2016,204(4):1613-1626.
|
[46] |
Warren RL,Keeling CL,Yuen MMS,Raymond A,Taylor GA,et al. Improved white spruce(Picea glauca)genome assemblies and annotation of large gene families of conifer terpenoid and phenolic defense metabolism[J]. Plant J,2015,83(2):189-212.
|
[47] |
Nystedt B,Street NR,Wetterbom A,Zuccolo A,Lin YC,et al. The Norway spruce genome sequence and conifer genome evolution[J]. Nature,2013,497(7451):579-584.
|
[48] |
Schnable PS,Ware D,Fulton RS,Stein JC,Wei FS,et al. The B73 maize genome:complexity,diversity,and dynamics[J]. Science,2009,326(5956):1112-1115.
|
[49] |
Leisner CP,Hamilton JP,Crisovan E,Manrique-Carpintero NC,Marand AP,et al. Genome sequence of M6,a diploid inbred clone of the high-glycoalkaloid-producing tuber-bearing potato species Solanum chacoense,reveals residual heterozygosity[J]. Plant J,2018,94(3):562-570.
|
[50] |
Chen ZJ,Sreedasyam A,Ando A,Song QX,de Santiago LM,et al. Genomic diversifications of five Gossypium allopolyploid species and their impact on cotton improvement[J]. Nature Genet,2020,52(5):525-533.
|
[51] |
Sun FM,Fan GY,Hu Q,Zhou YM,Guan M,et al. The high-quality genome of Brassica napus cultivar‘ZS11’reveals the introgression history in semi-winter morphotype[J]. Plant J,2017,92(3):452-468.
|
[52] |
Bayer PE,Hurgobin B,Golicz AA,Chan CKK,Yuan YX,et al. Assembly and comparison of two closely related Brassica napus genomes[J]. Plant Biotechnol J,2017,15(2):1602-1610.
|
[53] |
Sierro N,Battey JND,Ouadi S,Bakaher N,Bovet L,et al. The tobacco genome sequence and its comparison with those of tomato and potato[J]. Nat Commun,2014,5:3833.
|
[54] |
Guo LB,Qiu J,Ye CY,Jin GL,Mao LF,et al. Echinochloa crus-galli genome analysis provides insight into its adaptation and invasiveness as a weed[J]. Nat Commun,2017,8(1):1031.
|
[55] |
Hu Y,Chen JD,Fang L,Zhang ZY,Ma W,et al. Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton[J]. Nature Genet,2019,51(4):739-748.
|
[56] |
Matsuzaki M,Misumi O,Shin T,Maruyama S,Takahara M,et al. Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D[J]. Nature,2004,428(6983):653-657.
|
[57] |
Tuskan GA,Di Fazio S,Jansson S,Bohlmann J,Grigoriev I,et al. The genome of black cottonwood,Populus trichocarpa(Torr.&Gray)[J]. Science,2006,313(5793):1596-1604.
|
[58] |
Huang S,Li RQ,Zhang ZH,Li L,Gu XF,et al. The genome of the cucumber,Cucumis sativus L.[J]. Nature Genet,2009,41(12):1275-1281.
|
[59] |
Ming R,Van Buren R,Liu YL,Yang M,Han YP,et al. Genome of the long-living sacred lotus(Nelumbo nucifera Gaertn.)[J]. Genome Biol,2013,14(5):R41.
|
[60] |
One Thousand Plant Transcriptomes Initiative. One thousand plant transcriptomes and the phylogenomics of green plants[J]. Nature,2019,574(7780):679-685.
|
[61] |
Lang DD,Zhang SL,Ren PP,Liang F,Sun ZY,et al.Comparison of the two up-to-date sequencing technologies for genome assembly:Hi Fi reads of Pacbio SequelⅡsystem and ultralong reads of Oxford Nanopore[J]. GigaScience,2020,9(12):123.
|
[62] |
Zhou CX,Olukolu B,Gemenet DC,Wu S,Gruneberg W,et al. Assembly of whole-chromosome pseudomolecules for polyploid plant genomes using outbred mapping populations[J]. Nature Genet,2020,52(11):1256-1264.
|
[63] |
Jiao YP,Peluso P,Shi JH,Liang T,Stitzer MC,et al. Improved maize reference genome with single-molecule technologies[J]. Nature,2017,546(7659):524-527.
|
[64] |
Belton JM,McCord RP,Gibcus JH,Naumova N,Zhan Y,Dekker J. Hi-C:a comprehensive technique to capture the conformation of genomes[J]. Methods,2012,58(3):268-276.
|
[65] |
Phillippy AM. New advances in sequence assembly[J].Genome Res,2017,27(5):xi-xiii.
|
[66] |
Wei QZ,Wang JL,Wang WH,Hu TH,Hu HJ,Bao CG. A high-quality chromosome-level genome assembly reveals genetics for important traits in eggplant[J]. Hortic Res,2020,7(1):153.
|
[67] |
Xie T,Zheng JF,Liu S,Peng C,Zhou YM,et al. De novo plant genome assembly based on chromatin interactions:a case study of Arabidopsis thaliana[J]. Mol Plant,2015,8(3):489-492.
|
[68] |
Zhang XT,Zhang SC,Zhao Q,Ming R,Tang HB. Assembly of allele-aware,chromosomal-scale autopolyploid genomes based on Hi-C data[J]. Nat Plants,2019,5(8):833-845.
|
[69] |
Vanburen R,Wai CM,Wang XW,Pardo J,Yocca AE,et al. Exceptional subgenome stability and functional divergence in the allotetraploid Ethiopian cereal teff[J]. Nat Commun,2020,11(1):884.
|
[70] |
Zhang JS,Zhang XT,Tang HB,Zhang Q,Hua XT,et al.Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L.[J]. Nature Genet,2018,50(11):1565-1573.
|
[71] |
Bertioli DJ,Jenkins J,Clevenger J,Dudchenko O,Gao DY,et al. The genome sequence of segmental allotetraploid peanut Arachis hypogaea[J]. Nature Genet,2019,51(5):877-884.
|
[72] |
Hulsekemp AM,Maheshwari S,Stoffel K,Hill TA,Jaffe D,et al. Reference quality assembly of the 3. 5-Gb genome of Capsicum annuum from a single linked-read library[J]. Hortic Res,2018,5:4.
|
[73] |
Gao CX,Zhang MN,Chen L. The Comparison of two single-cell sequencing platforms:BD Rhapsody and 10x genomics chromium[J]. Curr Genomics,2020,21(8):602-609.
|
[74] |
Ming R,Hou SB,Feng Y,Yu QY,Dionne-Laporte A,et al. The draft genome of the transgenic tropical fruit tree papaya(Carica papaya Linnaeus)[J]. Nature,2008,452(7190):991-996.
|
[75] |
Sahu SK,Liu M,Yssel A,Kariba R,Muthemba S,et al.Draft genomes of two artocarpus plants,Jackfruit(A. heterophyllus)and Breadfruit(A. altilis)[J]. Genes,2020,11(1):27.
|
[76] |
Dhont A,Denoeud F,Aury JM,Baurens FC,Carreel F,et al. The banana(Musa acuminata)genome and the evolution of monocotyledonous plants[J]. Nature,2012,488(7410):213-217.
|
[77] |
Monat C,Pera B,Ndjiondjop MN,Sow M,Tranchant-Dubreuil C,et al. De novo assemblies of three Oryza glaberrima accessions provide first insights about pan-genome of African rices[J]. Genome Biol Evol,2017,9(1):1-6.
|
[78] |
Qin P,Lu HW,Du HL,Wang H,Chen WL,et al. Pangenome analysis of 33 genetically diverse rice accessions reveals hidden genomic variations[J]. Cell,2021,184(13):3542-3558.
|
[79] |
Zhao Q,Feng Q,Lu HY,Li Y,Wang AH,et al. Pangenome analysis highlights the extent of genomic variation in cultivated and wild rice[J]. Nat Genet,2018,50(2):278-284.
|
[80] |
Wang WS,Mauleon R,Hu ZQ,Chebotarov D,Tai SS,et al. Genomic variation in 3,010 diverse accessions of Asian cultivated rice[J]. Nature,2018,557(7703):43-49.
|
[81] |
Liu YC,Du HL,Li PC,Shen YT,Peng H,et al. Pangenome of wild and cultivated soybeans[J]. Cell,2020,182(1):162-176.
|
[82] |
Gao L,Gonda I,Sun HH,Ma QY,Bao K,et al. The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor[J]. Nat Genet,2019,51(6):1044-1051.
|
[83] |
Hübner S,Bercovich,Todesco M,Mandel JR,Odenheimer J,et al. Sunflower pan-genome analysis shows that hybridization altered gene content and disease resistance[J]. Nat Plants,2019,5(1):54-62.
|
[84] |
Montenegro JD,Golicz AA,Bayer PE,Hurgobin B,Lee HT,et al. The pangenome of hexaploid bread wheat[J].Plant J,2017,90(5):1007-1013.
|
[85] |
Walkowiak S,Gao LL,Monat,C,Haberer G,Kassa MT,et al. Multiple wheat genomes reveal global variation in modern breeding[J]. Nature,2020,588(7837):277-283.
|
[86] |
Zhang X,Wang G,Zhang S,Chen S,Wang Y,et al. Genomes of the banyan tree and pollinator wasp provide insights into fig-wasp coevolution[J]. Cell,2020,183(4):875-889.
|
[1] | HU Guang-ming, XIA Wen-juan, ZHENG Li, RAO Hang-kong, LEI Ming, WANG Jian, ZHAO Ting-ting, LI Zuo-zhou, ZHONG Cai-hong. Investigation and fruit genetic diversity analysis of wild Actinidia germplasm resources in Tongshan County, Hubei Province[J]. Plant Science Journal, 2021, 39(6): 620-631. DOI: 10.11913/PSJ.2095-0837.2021.60620 |
[2] | Chen Mei-Yan, Zhao Ting-Ting, Liu Xiao-Li, Han Fei, Zhang Peng, Zhong Cai-Hong. Factor analysis and comprehensive evaluation of fruit quality of ‘Jinyan’ kiwifruit (Actinidia eriantha×Actinidia chinensis)[J]. Plant Science Journal, 2021, 39(1): 85-92. DOI: 10.11913/PSJ.2095-0837.2021.10085 |
[3] | WANG Rong, HE Zhi-Chong, FANG Xue-Min, CHEN Dan-Li, WANG Qi, MENG Jia-Song, ZHAO Da-Qiu. Analysis of Phenotypic Diversity of Paeonia lactiflora Cultivars in Yangzhou[J]. Plant Science Journal, 2016, 34(6): 901-908. DOI: 10.11913/PSJ.2095-0837.2016.60901 |
[4] | YANG Xiao-Hui, ZHAO Xue-Li, GAO Xin-Fen. Morphological Variation and ITS Sequence Analysis of the Indigofera szechuensis Complex[J]. Plant Science Journal, 2015, 33(6): 727-733. DOI: 10.11913/PSJ.2095-0837.2015.60727 |
[5] | CAI Jun-Long, LU Jin-Qing, LI Qiang, GUO Sheng-Nan, DAI Yi. Analysis on Volatile Components of Caryophylli Flos from Different Habitats[J]. Plant Science Journal, 2015, 33(2): 251-258. DOI: 10.11913/PSJ.2095-0837.2015.20251 |
[6] | CHEN Sui-Qing, SONG Jun, CUI Can. Research and Evaluation on Chemical Fingerprints of Diterpenoids from Rabdosia rubescens[J]. Plant Science Journal, 2012, 30(5): 519-527. DOI: 10.3724/SP.J.1142.2012.50519 |
[7] | SHU Xiao, YANG Zhi-Ling, YANG Xu, DUAN Hong-Ping, YU Hua-Hui, LIU Ruo-Nan. Variation in Traits of Magnolia officinalis Seedlings from Different Provenances and Their Principal Component Analysis[J]. Plant Science Journal, 2010, 28(5): 623-630. |
[8] | LI Ren-Wei, ZHANG Hung-Ta. Analysis on the Components of Seed Plant Flora in Sichuan Region[J]. Plant Science Journal, 2002, 20(5): 381-386. |
[9] | Xiong Xiufang, Zhang Yinhua, Gong Fujun, Nan Peng, Yuan Ping, Wang Guoliang. STUDIES ON THE CHEMICAL CONSTITUENTS OF THE VOLATILE OIL FROM CHENOPODIUM AMBROSIOIDES L.GROWN IN HUBEI[J]. Plant Science Journal, 1999, 17(3): 244-248. |
[10] | He Jingbiao, Sun Xiangzhong, Wang Huiqin, Zhong Yang, Huang Deshi. ANALYSES ON THE CHARACTERS OF THE GENUS OTTELIA (HYDROCHARITACEAE) IN CHINA[J]. Plant Science Journal, 1992, 10(2): 101-108. |