Advance Search
XIE Ling-juan, YE Chu-yu, SHEN En-hui. Advances in plant genome construction[J]. Plant Science Journal, 2021, 39(6): 681-691. DOI: 10.11913/PSJ.2095-0837.2021.60681
Citation: XIE Ling-juan, YE Chu-yu, SHEN En-hui. Advances in plant genome construction[J]. Plant Science Journal, 2021, 39(6): 681-691. DOI: 10.11913/PSJ.2095-0837.2021.60681

Advances in plant genome construction

Funds: 

supported by a grant from the Fundamental Research Funds for the Central Universities(2021QN81013)

More Information
  • Received Date: June 01, 2021
  • Revised Date: July 07, 2021
  • Available Online: October 31, 2022
  • Published Date: December 27, 2021
  • Since the first model plant, Arabidopsis thaliana(L.)Heynh, was sequenced in 2000, significant advances have been made in the sequencing of plant genomes over the last 21 years. With continuous development of technology, the cost of sequencing has greatly reduced and genome quality has significantly improved. The tremendous information hidden in these sequences should provide valuable resources for biological research. Here, we summarized and discussed the advances in plant reference genome de novo sequencing that have occurred over the last 21 years. We analyzed dynamic changes between the annual amount of sequenced plant genomes and sequencing technology, explored the relationship between sequenced genome size and chromosome ploidy and repetitive sequences, and summarized the main species classifications and distributions of sequenced plant genomes in the species phylogenetic tree. Finally, potential research hotpots of plant genomes were discussed.
  • [1]
    Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana[J]. Nature,2000,408(6814):796-815.
    [2]
    Hamilton JP,Robin C. Advances in plant genome sequencing[J]. Plant J,2012,70(1):177-190.
    [3]
    Neale DB,Martínez PJ,Delatorre AR,Montanari S,Wei XX. Novel insights into tree biology and genome evolution as revealed through genomics[J]. Annu Rev Plant Biol,2017,68:457-483.
    [4]
    Isobe S,Shirasawa K,Hirakawa H. Challenges to genome sequence dissection in sweetpotato[J]. Breed Sci,2017,67(1):35-40.
    [5]
    Thorsten L,Sophien K,Khaoula B. CRISPR crops:plant genome editing toward disease resistance[J]. Annu Rev Phytopatholy,2018,56(1):479-512.
    [6]
    Negrao S,Oliveira MM,Jena KK,Mackill D. Integration of genomic tools to assist breeding in the japonica subspecies of rice[J]. Mol Breed,2008,22:159-168.
    [7]
    Xu X,Pan SK,Cheng SF,Zhang B,Mu DS,et al. Genome sequence and analysis of the tuber crop potato[J].Nature,2011,475(7355):189-195.
    [8]
    Feuillet C,Leach JE,Rogers J,Schnable PS,Eversole K.Crop genome sequencing:lessons and rationales[J].Trends Plant Sci,2011,16(2):77-88.
    [9]
    Albert VA,Barbazuk WB,de Pamphilis CW,Der JP,Leebens-Mack J,et al. The Amborella genome and the evolution of flowering plants[J]. Science, 2013, 342(6165):1241089.
    [10]
    Soundararajan P,Won SY,Kim JS. Insight on rosaceae family with genome sequencing and functional genomics perspective[J]. Biomed Res Int,2019:7519687.
    [11]
    Ahmad R,Anjum MA,Balal RM. From markers to genome based breeding in horticultural crops:an overview[J].Phyton-Int J Exp Bo,2020,89(2):183-204.
    [12]
    Michael TP,Jackson S. The first 50 plant genomes[J].Plant Genome,2013,6(2):1-7.
    [13]
    Shendure J,Balasubramanian S,Church GM,Gilbert W,Rogers J,et al. DNA sequencing at 40:past,present and future[J]. Nature,2017,550(7676):345-535.
    [14]
    Belser C,Istace B,Denis E,Dubarry M,Baurens FC,et al. Chromosome-scale assemblies of plant genomes using nanopore long reads and optical maps[J]. Nat Plants,2018,4(11):879-887.
    [15]
    Chen F,Chen JH,Wang ZJ,Zhang JW,Li XJ,et al. Genomics:cracking the mysteries of walnuts[J]. J Genet,2019,98(2):1-3.
    [16]
    Singh B,Salaria N,Thakur K,Kukreja S,Gautam S,et al. Functional genomic approaches to improve crop plant heat stress tolerance[J]. F1000Res,2019,8:1721.
    [17]
    Song SH,Tian DM,Zhang Z,Hu SN,Yu J. Rice genomics:over the past two decades and into the future[J].Genom Proteomics Bioinformatics,2018,16(6):397-404.
    [18]
    Isobe S,Shirasawa K,Hirakawa H. Current status in whole genome sequencing and analysis of Ipomoea spp.[J]. Plant Cell Rep,2019,38(11):1365-1371.
    [19]
    Isobe S,Shirasawa K,Hirakawa H. Advances of whole genome sequencing in strawberry with NGS technologies[J]. Hort J,2020,89(2):108-114.
    [20]
    Bolger ME,Weisshaar B,Scholz U,Stein N,Usadel B,et al. Plant genome sequencing-applications for crop improvement[J]. Curr Opin Biotechnol,2014,26:31-37.
    [21]
    Yu J,Hu SN,Wang J,Wong GKS,Li SG,et al. A draft sequence of the rice genome(Oryza sativa L. ssp. indica)[J]. Science,2002,296(5565):79-92.
    [22]
    Derelle E,Ferraz C,Rombauts S,Rouzé P,Worden AZ,et al. Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features[J]. Proc Natl Acad Sci USA,2006,103(31):11647-11652.
    [23]
    Sanger F,Nicklen S,Coulson AR. DNA sequencing with chain-terminating inhibitors[J]. Proc Natl Acad Sci USA,1977,74(12):5463-5467.
    [24]
    Ronaghi M,Mathias U,Pål N. A sequencing method based on real-time pyrophosphate[J]. Science,1998,281(5375):363-365.
    [25]
    Avni R,Nave M,Barad O,Baruch K,Twardziok SO,et al. Wild emmer genome architecture and diversity elucidate wheat evolution and domestication[J]. Science,2017,357(6364):93-97.
    [26]
    Mitros T,Session AM,James BT,Wu GHA,Belaffif MB,et al. Genome biology of the paleotetraploid perennial biomass crop Miscanthus[J]. Nat Commun,2020,5442(11):1-11.
    [27]
    Gui S,Peng J,Wang XL,Wu ZH,Cao R,et al. Improving Nelumbo nucifera genome assemblies using high-resolution genetic maps and Bio Nano genome mapping reveals ancient chromosome rearrangements[J]. Plant J,2018,94(4):721-734.
    [28]
    Eid J,Fehr A,Gray J,Luong K,Lyle J,et al. Real-time DNA sequencing from single polymerase molecules[J].Science,2009,323(5910):133-138.
    [29]
    Hon T,Mars K,Young G,Tsai YC,Karalius JW,et al.Highly accurate long-read Hi Fi sequencing data for five complex genomes[J]. Sci Data,2020,7(1):1-11.
    [30]
    Zhou Q,Tang D,Huang W,Yang ZM,Zhang Y,et al.Haplotype-resolved genome analyses of a heterozygous diploid potato[J]. Nat Genet,2020,52(10):1018-1023.
    [31]
    Chen HT,Zeng Y,Yang YZ,Huang LL,Tang BL,et al.Allele-aware chromosome-level genome assembly and efficient transgene-free genome editing for the autotetraploid cultivated alfalfa[J]. Nat Commun,2020,11(1):2494.
    [32]
    Sun XP,Jiao C,Schwaninger HD,Chao CT,Ma YM,et al. Phased diploid genome assemblies and pan-genomes provide insights into the genetic history of apple domestication[J]. Nat Genet,2020,52(12):1423-1432.
    [33]
    Ma DN,Dong SS,Zhang SC,Wei XQ,Xie QJ,et al.Chromosome-level reference genome assembly provides insights into aroma biosynthesis in passion fruit(Passiflora edulis)[J]. Mol Ecol Resour,2020,21(3):955-968.
    [34]
    Leggett RM, Clark MD. A world of opportunities with Nanopore sequencing[J]. J Exp Bot,2017,68(20):5419-5429.
    [35]
    Wenger AM,Peluso P,Rowell WJ,Chang PC,Hall RJ,et al. Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome[J]. Nat Biotechnol,2019,37(10):1155-1162.
    [36]
    Dudchenko O,Batra SS,Omer AD,Nyquist SK,Hoeger M,et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds[J]. Science,2017,356(6333):92-95.
    [37]
    Bocklandt S,Hastie A,Cao H. Bionano genome mapping:high-throughput,ultra-long molecule genome analysis system for precision genome assembly and haploidresolved structural variation discovery[J]. Adv Exp Med Biol,2019,1129:97-118.
    [38]
    Van de PY,Mizrachi E,Marchal K. The evolutionary significance of polyploidy[J]. Nat Rev,2017,18:411-424.
    [39]
    Sun X,Zhu S,Li N,Cheng Y,Zhao J,et al. A chromosome-level genome assembly of garlic(Allium sativum)provides insights into genome evolution and Allicin biosynthesis[J]. Mol Plant,2020,13(9):1328-1339.
    [40]
    Dodsworth S,Chase MW,Kelly LJ,Leich IJ,Macas J,et al. Genomic repeat abundances contain phylogenetic signal[J]. Syst Biol,2015,64(1):112-126.
    [41]
    Qiu H,Price DC,Weber APM,Reeb V,Yang EC,et al.Adaptation through horizontal gene transfer in the cryptoendolithic red alga Galdieria phlegrea[J]. Curr Biol,2013,23(19):865-866.
    [42]
    Gao XY,Zhang X,Chen W,Li J,Yang WJ,et al. Transcriptome analysis of Paris polyphylla var. yunnanensis illuminates the biosynthesis and accumulation of steroidal saponins in rhizomes and leaves[J]. Phytochemistry,2020,178(7):112460.
    [43]
    The International Wheat Genome Sequencing Consortium(IWGSC). A chromosome-based draft sequence of the hexaploid bread wheat(Triticum aestivum)genome[J].Science,2014,345(6194):1251788.
    [44]
    Zimin AV,Puiu D,Hall R,Kingan S,Clavijo BJ,Salzberg SL. The first near-complete assembly of the hexaploid bread wheat genome, Triticum aestivum[J]. GigaScience,2017,6(11):gix097.
    [45]
    Stevens KA,Wegrzyn JL,Zimin A,Puiu D,Crepeau M,et al. Sequence of the sugar pine megagenome[J].Genet,2016,204(4):1613-1626.
    [46]
    Warren RL,Keeling CL,Yuen MMS,Raymond A,Taylor GA,et al. Improved white spruce(Picea glauca)genome assemblies and annotation of large gene families of conifer terpenoid and phenolic defense metabolism[J]. Plant J,2015,83(2):189-212.
    [47]
    Nystedt B,Street NR,Wetterbom A,Zuccolo A,Lin YC,et al. The Norway spruce genome sequence and conifer genome evolution[J]. Nature,2013,497(7451):579-584.
    [48]
    Schnable PS,Ware D,Fulton RS,Stein JC,Wei FS,et al. The B73 maize genome:complexity,diversity,and dynamics[J]. Science,2009,326(5956):1112-1115.
    [49]
    Leisner CP,Hamilton JP,Crisovan E,Manrique-Carpintero NC,Marand AP,et al. Genome sequence of M6,a diploid inbred clone of the high-glycoalkaloid-producing tuber-bearing potato species Solanum chacoense,reveals residual heterozygosity[J]. Plant J,2018,94(3):562-570.
    [50]
    Chen ZJ,Sreedasyam A,Ando A,Song QX,de Santiago LM,et al. Genomic diversifications of five Gossypium allopolyploid species and their impact on cotton improvement[J]. Nature Genet,2020,52(5):525-533.
    [51]
    Sun FM,Fan GY,Hu Q,Zhou YM,Guan M,et al. The high-quality genome of Brassica napus cultivar‘ZS11’reveals the introgression history in semi-winter morphotype[J]. Plant J,2017,92(3):452-468.
    [52]
    Bayer PE,Hurgobin B,Golicz AA,Chan CKK,Yuan YX,et al. Assembly and comparison of two closely related Brassica napus genomes[J]. Plant Biotechnol J,2017,15(2):1602-1610.
    [53]
    Sierro N,Battey JND,Ouadi S,Bakaher N,Bovet L,et al. The tobacco genome sequence and its comparison with those of tomato and potato[J]. Nat Commun,2014,5:3833.
    [54]
    Guo LB,Qiu J,Ye CY,Jin GL,Mao LF,et al. Echinochloa crus-galli genome analysis provides insight into its adaptation and invasiveness as a weed[J]. Nat Commun,2017,8(1):1031.
    [55]
    Hu Y,Chen JD,Fang L,Zhang ZY,Ma W,et al. Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton[J]. Nature Genet,2019,51(4):739-748.
    [56]
    Matsuzaki M,Misumi O,Shin T,Maruyama S,Takahara M,et al. Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D[J]. Nature,2004,428(6983):653-657.
    [57]
    Tuskan GA,Di Fazio S,Jansson S,Bohlmann J,Grigoriev I,et al. The genome of black cottonwood,Populus trichocarpa(Torr.&Gray)[J]. Science,2006,313(5793):1596-1604.
    [58]
    Huang S,Li RQ,Zhang ZH,Li L,Gu XF,et al. The genome of the cucumber,Cucumis sativus L.[J]. Nature Genet,2009,41(12):1275-1281.
    [59]
    Ming R,Van Buren R,Liu YL,Yang M,Han YP,et al. Genome of the long-living sacred lotus(Nelumbo nucifera Gaertn.)[J]. Genome Biol,2013,14(5):R41.
    [60]
    One Thousand Plant Transcriptomes Initiative. One thousand plant transcriptomes and the phylogenomics of green plants[J]. Nature,2019,574(7780):679-685.
    [61]
    Lang DD,Zhang SL,Ren PP,Liang F,Sun ZY,et al.Comparison of the two up-to-date sequencing technologies for genome assembly:Hi Fi reads of Pacbio SequelⅡsystem and ultralong reads of Oxford Nanopore[J]. GigaScience,2020,9(12):123.
    [62]
    Zhou CX,Olukolu B,Gemenet DC,Wu S,Gruneberg W,et al. Assembly of whole-chromosome pseudomolecules for polyploid plant genomes using outbred mapping populations[J]. Nature Genet,2020,52(11):1256-1264.
    [63]
    Jiao YP,Peluso P,Shi JH,Liang T,Stitzer MC,et al. Improved maize reference genome with single-molecule technologies[J]. Nature,2017,546(7659):524-527.
    [64]
    Belton JM,McCord RP,Gibcus JH,Naumova N,Zhan Y,Dekker J. Hi-C:a comprehensive technique to capture the conformation of genomes[J]. Methods,2012,58(3):268-276.
    [65]
    Phillippy AM. New advances in sequence assembly[J].Genome Res,2017,27(5):xi-xiii.
    [66]
    Wei QZ,Wang JL,Wang WH,Hu TH,Hu HJ,Bao CG. A high-quality chromosome-level genome assembly reveals genetics for important traits in eggplant[J]. Hortic Res,2020,7(1):153.
    [67]
    Xie T,Zheng JF,Liu S,Peng C,Zhou YM,et al. De novo plant genome assembly based on chromatin interactions:a case study of Arabidopsis thaliana[J]. Mol Plant,2015,8(3):489-492.
    [68]
    Zhang XT,Zhang SC,Zhao Q,Ming R,Tang HB. Assembly of allele-aware,chromosomal-scale autopolyploid genomes based on Hi-C data[J]. Nat Plants,2019,5(8):833-845.
    [69]
    Vanburen R,Wai CM,Wang XW,Pardo J,Yocca AE,et al. Exceptional subgenome stability and functional divergence in the allotetraploid Ethiopian cereal teff[J]. Nat Commun,2020,11(1):884.
    [70]
    Zhang JS,Zhang XT,Tang HB,Zhang Q,Hua XT,et al.Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L.[J]. Nature Genet,2018,50(11):1565-1573.
    [71]
    Bertioli DJ,Jenkins J,Clevenger J,Dudchenko O,Gao DY,et al. The genome sequence of segmental allotetraploid peanut Arachis hypogaea[J]. Nature Genet,2019,51(5):877-884.
    [72]
    Hulsekemp AM,Maheshwari S,Stoffel K,Hill TA,Jaffe D,et al. Reference quality assembly of the 3. 5-Gb genome of Capsicum annuum from a single linked-read library[J]. Hortic Res,2018,5:4.
    [73]
    Gao CX,Zhang MN,Chen L. The Comparison of two single-cell sequencing platforms:BD Rhapsody and 10x genomics chromium[J]. Curr Genomics,2020,21(8):602-609.
    [74]
    Ming R,Hou SB,Feng Y,Yu QY,Dionne-Laporte A,et al. The draft genome of the transgenic tropical fruit tree papaya(Carica papaya Linnaeus)[J]. Nature,2008,452(7190):991-996.
    [75]
    Sahu SK,Liu M,Yssel A,Kariba R,Muthemba S,et al.Draft genomes of two artocarpus plants,Jackfruit(A. heterophyllus)and Breadfruit(A. altilis)[J]. Genes,2020,11(1):27.
    [76]
    Dhont A,Denoeud F,Aury JM,Baurens FC,Carreel F,et al. The banana(Musa acuminata)genome and the evolution of monocotyledonous plants[J]. Nature,2012,488(7410):213-217.
    [77]
    Monat C,Pera B,Ndjiondjop MN,Sow M,Tranchant-Dubreuil C,et al. De novo assemblies of three Oryza glaberrima accessions provide first insights about pan-genome of African rices[J]. Genome Biol Evol,2017,9(1):1-6.
    [78]
    Qin P,Lu HW,Du HL,Wang H,Chen WL,et al. Pangenome analysis of 33 genetically diverse rice accessions reveals hidden genomic variations[J]. Cell,2021,184(13):3542-3558.
    [79]
    Zhao Q,Feng Q,Lu HY,Li Y,Wang AH,et al. Pangenome analysis highlights the extent of genomic variation in cultivated and wild rice[J]. Nat Genet,2018,50(2):278-284.
    [80]
    Wang WS,Mauleon R,Hu ZQ,Chebotarov D,Tai SS,et al. Genomic variation in 3,010 diverse accessions of Asian cultivated rice[J]. Nature,2018,557(7703):43-49.
    [81]
    Liu YC,Du HL,Li PC,Shen YT,Peng H,et al. Pangenome of wild and cultivated soybeans[J]. Cell,2020,182(1):162-176.
    [82]
    Gao L,Gonda I,Sun HH,Ma QY,Bao K,et al. The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor[J]. Nat Genet,2019,51(6):1044-1051.
    [83]
    Hübner S,Bercovich,Todesco M,Mandel JR,Odenheimer J,et al. Sunflower pan-genome analysis shows that hybridization altered gene content and disease resistance[J]. Nat Plants,2019,5(1):54-62.
    [84]
    Montenegro JD,Golicz AA,Bayer PE,Hurgobin B,Lee HT,et al. The pangenome of hexaploid bread wheat[J].Plant J,2017,90(5):1007-1013.
    [85]
    Walkowiak S,Gao LL,Monat,C,Haberer G,Kassa MT,et al. Multiple wheat genomes reveal global variation in modern breeding[J]. Nature,2020,588(7837):277-283.
    [86]
    Zhang X,Wang G,Zhang S,Chen S,Wang Y,et al. Genomes of the banyan tree and pollinator wasp provide insights into fig-wasp coevolution[J]. Cell,2020,183(4):875-889.
  • Related Articles

    [1]HU Guang-ming, XIA Wen-juan, ZHENG Li, RAO Hang-kong, LEI Ming, WANG Jian, ZHAO Ting-ting, LI Zuo-zhou, ZHONG Cai-hong. Investigation and fruit genetic diversity analysis of wild Actinidia germplasm resources in Tongshan County, Hubei Province[J]. Plant Science Journal, 2021, 39(6): 620-631. DOI: 10.11913/PSJ.2095-0837.2021.60620
    [2]Chen Mei-Yan, Zhao Ting-Ting, Liu Xiao-Li, Han Fei, Zhang Peng, Zhong Cai-Hong. Factor analysis and comprehensive evaluation of fruit quality of ‘Jinyan’ kiwifruit (Actinidia eriantha×Actinidia chinensis)[J]. Plant Science Journal, 2021, 39(1): 85-92. DOI: 10.11913/PSJ.2095-0837.2021.10085
    [3]WANG Rong, HE Zhi-Chong, FANG Xue-Min, CHEN Dan-Li, WANG Qi, MENG Jia-Song, ZHAO Da-Qiu. Analysis of Phenotypic Diversity of Paeonia lactiflora Cultivars in Yangzhou[J]. Plant Science Journal, 2016, 34(6): 901-908. DOI: 10.11913/PSJ.2095-0837.2016.60901
    [4]YANG Xiao-Hui, ZHAO Xue-Li, GAO Xin-Fen. Morphological Variation and ITS Sequence Analysis of the Indigofera szechuensis Complex[J]. Plant Science Journal, 2015, 33(6): 727-733. DOI: 10.11913/PSJ.2095-0837.2015.60727
    [5]CAI Jun-Long, LU Jin-Qing, LI Qiang, GUO Sheng-Nan, DAI Yi. Analysis on Volatile Components of Caryophylli Flos from Different Habitats[J]. Plant Science Journal, 2015, 33(2): 251-258. DOI: 10.11913/PSJ.2095-0837.2015.20251
    [6]CHEN Sui-Qing, SONG Jun, CUI Can. Research and Evaluation on Chemical Fingerprints of Diterpenoids from Rabdosia rubescens[J]. Plant Science Journal, 2012, 30(5): 519-527. DOI: 10.3724/SP.J.1142.2012.50519
    [7]SHU Xiao, YANG Zhi-Ling, YANG Xu, DUAN Hong-Ping, YU Hua-Hui, LIU Ruo-Nan. Variation in Traits of Magnolia officinalis Seedlings from Different Provenances and Their Principal Component Analysis[J]. Plant Science Journal, 2010, 28(5): 623-630.
    [8]LI Ren-Wei, ZHANG Hung-Ta. Analysis on the Components of Seed Plant Flora in Sichuan Region[J]. Plant Science Journal, 2002, 20(5): 381-386.
    [9]Xiong Xiufang, Zhang Yinhua, Gong Fujun, Nan Peng, Yuan Ping, Wang Guoliang. STUDIES ON THE CHEMICAL CONSTITUENTS OF THE VOLATILE OIL FROM CHENOPODIUM AMBROSIOIDES L.GROWN IN HUBEI[J]. Plant Science Journal, 1999, 17(3): 244-248.
    [10]He Jingbiao, Sun Xiangzhong, Wang Huiqin, Zhong Yang, Huang Deshi. ANALYSES ON THE CHARACTERS OF THE GENUS OTTELIA (HYDROCHARITACEAE) IN CHINA[J]. Plant Science Journal, 1992, 10(2): 101-108.
  • Cited by

    Periodical cited type(24)

    1. 胡星,胡纪龙,张敏,刘娇,黄晓霞. 外源NO对盐胁迫下八角金盘叶片生理特性及解剖结构的影响. 西南林业大学学报(自然科学). 2025(01): 68-77 .
    2. 张伟溪,丁密,苏晓华,李爱平,王小江,余金金,李政宏,黄秦军,丁昌俊. 小叶杨×欧洲黑杨杂交F_1代生长及叶片解剖结构杂种优势分析与抗旱性评价. 南京林业大学学报(自然科学版). 2025(01): 46-58 .
    3. 赵莹. 叶形与叶色在园林景观设计中的应用. 分子植物育种. 2025(02): 622-627 .
    4. 邱彦芬,杨湉,吴裕. 基于叶片解剖结构评价不同倍性橡胶树无性系抗旱性. 热带农业科技. 2024(02): 61-67 .
    5. 萨其拉,张霞,朱琳,康萨如拉. 长期不同放牧强度下荒漠草原优势种无芒隐子草叶片解剖结构变化. 植物生态学报. 2024(03): 331-340 .
    6. 胡光明,肖涛,彭家清,李大卫,田华,王华玲,肖丽丽,程均欢,黄海雷,吴伟,钟彩虹. 基于叶片形态及显微特征评价12个猕猴桃栽培品种的抗旱性. 果树学报. 2024(05): 911-928 .
    7. 刘柯珍,何诚. 微观视角下防火树种特征研究动态. 西南林业大学学报(自然科学). 2024(03): 212-220 .
    8. 肖刚,赵峰,李世民,刘帅,路艳. 高速公路中央分隔带绿化植物对干旱胁迫的生理响应和抗旱性评价. 山东交通科技. 2024(03): 81-85 .
    9. 罗玲,刘伟,梁东,马一君,李然,吕秀兰. 不同架形对阳光玫瑰葡萄叶幕生态和高温下应逆生理的影响. 果树学报. 2024(12): 2444-2462 .
    10. 侯立伟,鲁绍伟,李少宁,赵娜,徐晓天. 城市绿化灌木耐旱性评价及灌溉制度研究进展. 世界林业研究. 2023(01): 45-51 .
    11. 孙一鑫,马乐乐,苗丽丽,何佳星,李建明. 基于光辐射时滞效应的温室番茄蒸腾量模型的构建. 西北农林科技大学学报(自然科学版). 2023(02): 83-92 .
    12. 何桥,向海洋,向芳,黄明,陈栋,向素琼,郭启高,梁国鲁,熊伟. 野生李用于巫山脆李砧木的适宜性研究. 西南大学学报(自然科学版). 2023(03): 74-87 .
    13. 马静,贺熙勇,陶亮,吴超,李志强,宫丽丹. 基于叶片解剖结构的澳洲坚果种质资源抗旱性评价. 热带作物学报. 2023(07): 1392-1399 .
    14. 仇杰,高超,罗洪发. 贵州西北喀斯特区古茶树叶片解剖结构及抗旱性评价. 西北植物学报. 2023(07): 1170-1184 .
    15. 董淑龙,马姜明,莫燕华,黎露. 红花檵木种质资源与应用研究综述. 广西林业科学. 2022(02): 290-297 .
    16. 董志君,高健洲,于晓南. 烯效唑对盆栽芍药生理特性及显微结构的影响. 北京林业大学学报. 2022(07): 117-125 .
    17. 王菲,程小毛,肖云龙,黄晓霞. 千家寨野生古茶树叶片解剖结构和化学组分计量特征对海拔梯度的适应. 生态学杂志. 2021(07): 1958-1968 .
    18. 景晨娟,陈雪峰,王端,季文章,武晓红. 三个李子品种叶片结构差异及其抗旱性分析. 北方园艺. 2021(15): 27-34 .
    19. 钟灶发,张利娟,高思思,彭婷. 干旱胁迫下4种柑橘砧木叶片细胞学特征及抗旱性比较. 园艺学报. 2021(08): 1579-1588 .
    20. 周荧,王頔,聂飞. 贵州省两个蓝莓品种组培苗和扦插苗干旱胁迫响应. 南方农业. 2021(20): 171-174+178 .
    21. 郭燕,张树航,李颖,张馨方,王广鹏. 中国板栗238份品种(系)叶片形态、解剖结构及其抗旱性评价. 园艺学报. 2020(06): 1033-1046 .
    22. 董章宏,尹亚梅,徐剑,李显煌,瞿绍宏,辛静,常晓勇,辛培尧. 滇杨雌、雄株茎叶解剖结构差异分析. 云南农业大学学报(自然科学). 2020(03): 502-510 .
    23. 谭莎,赖路伟,黄永芳,叶小萍,谭健彬,许雄坚. 3个山茶品种对干旱胁迫的生理响应. 亚热带植物科学. 2020(05): 335-339 .
    24. 崔杰,洪文君,刘俊,陈伟玉,何书奋,罗金环. 极小种群野生植物海南假韶子结构解剖特征研究. 广东农业科学. 2019(11): 31-36 .

    Other cited types(22)

Catalog

    Article views (944) PDF downloads (538) Cited by(46)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return