Advance Search
Wei Li, Liu Jian-Li. Overview of research on protein subcellular localization in plants[J]. Plant Science Journal, 2021, 39(1): 93-101. DOI: 10.11913/PSJ.2095-0837.2021.10093
Citation: Wei Li, Liu Jian-Li. Overview of research on protein subcellular localization in plants[J]. Plant Science Journal, 2021, 39(1): 93-101. DOI: 10.11913/PSJ.2095-0837.2021.10093

Overview of research on protein subcellular localization in plants

Funds: 

This work was supported by a grant from the National Natural Science Foundation of China (31960346).

More Information
  • Received Date: July 01, 2020
  • Revised Date: October 18, 2020
  • Available Online: October 31, 2022
  • Published Date: February 27, 2021
  • The localization of proteins in plant cells is the key to understanding protein function, gene regulation, and protein-protein interactions. In recent years, with the rapid development of various protein-subcellular localization methods and continuous improvement in technology, protein-subcellular localization has achieved high-throughput and in vivo dynamic research. In this paper, we summarize current research progress on the common techniques of plant protein subcellular localization and development of organelle-specific markers. We also present future perspectives in this research field.
  • [1]
    Lunn JE. Compartmentation in plant metabolism[J]. J Exp Bot, 2007, 58(1):35-47.
    [2]
    Tanz SK, Castleden I, Small ID, Millar AH. Fluorescent protein tagging as a tool to define the subcellular distribution of proteins in plant[J]. Front Plant Sci, 2013, 24(4):214.
    [3]
    Dangol S, Singh R, Chen Y, Jwa N. Visualization of multicolored in vivo organelle markers for co-localization studies in Oryza sativa[J]. Mol Cells, 2017, 40(11):828-836.
    [4]
    Naohiro K, Dominique P, Eric L. Spectral profiling for the simultaneous observation of four distinct fluorescent proteins and detection of protein-protein interaction via fluorescence resonance energy transfer in tobacco leaf nuclei[J]. Plant Physiol, 2002, 129(3):931-942.
    [5]
    Kohler RH, Zipfer WR, Webb WW, Hanson MR. The green fluorescent protein as a marker to visualize plant mitochondria in vivo[J]. Plant J, 1997, 11(3):613-621.
    [6]
    Mankin SL, Thompson WF. New green fluorescent protein genes for plant transformation:intron-containing, ER loca-lized, and soluble-modified[J]. Plant Mol Biol Rep, 2001, 19:13-26.
    [7]
    Sedbrook JC, Carroll KL, Hung KF, Masson PH, Somerville CR. The ArabidopsisSKU5 gene encodes an extracellular glycosyl phosphatidylinositol-anchored glycoprotein involved in directional root growth[J]. Plant Cell, 2002, 14(7):1635-1648.
    [8]
    Gardiner JC, Taylor NG, Turner SR. Control of cellulose synthase complex localization in developing xylem[J]. Plant Cell, 2003, 15(8):1740-1748.
    [9]
    Tian G, Mohanty A, Chary SN, Li S, Paap B, Drakakaki G, et al. High-throughput fluorescent tagging of full-length Arabidopsisgene products in planta[J]. Plant Physiol, 2004, 135(1):25-38.
    [10]
    Thomas CL, Maule AJ. Limitations on the use of fused green fluorescent protein to investigate structure-function relationships for the cauliflower mosaic virus movement protein[J]. J Gen Virol, 2000, 81(Pt7):1851-1855.
    [11]
    DeBlasio SL, Sylvester AW, Jackson D. Illuminating plant biology:using fluorescent proteins for high-throughput analysis of protein localization and function in plants[J]. Brief Funct Genomics, 2010, 9(2):129-138.
    [12]
    Griesen D, Su D, Bérczi A, Asard H. Localization of an ascorbate-reducible cytochrome b561 in the plant tonoplast[J]. Plant Physiol, 2004, 134(2):726-734.
    [13]
    Hao H, Chen T, Fan L, Li R, Wang X. 2, 6-dichlorobenzonitrile causes multiple effects on pollen tube growth beyond altering cellulose synthesis in Pinus bungeanaZucc.[J]. PLoS One, 2013, 8(10):e76660.
    [14]
    Astruc T, Marinova P, Labas R, Gatellier P, Santé-Lhoutellier V. Detection and localization of oxidized proteins in muscle cells by fluorescence microscopy[J]. J Agric Food Chem, 2007, 55(23):9554-9558.
    [15]
    Bauer M, Dietrich C, Nowak K, Sierralta WD, Papenbrock J. Intracellular localization of Arabidopsis sulfurtransferases[J]. Plant Physiol, 2004, 135(2):916-926.
    [16]
    Ueki S, Citovsky V. Identification of an interactor of cadmium ion-induced glycine-rich protein involved in regulation of callose levels in plant vasculature[J]. Proc Natl Acad Sci USA, 2005, 102(34):12089-12094.
    [17]
    Hou Z, Huang WD. Immunohistochemical localization of IAA and ABP1 in strawberry shoot apexes during floral induction[J]. Planta, 2005, 222(4):678-687.
    [18]
    Xu RY, Niimi Y, Kojima K. Exogenous GA3 overcomes bud deterioration in tulip (Tulipa gesneriana L.) bulbs du-ring dry storage by promoting endogenous IAA activity in the internodes[J]. Plant Growth Regul, 2007, 52:1-8.
    [19]
    Peng YB, Zou C, Wang DH, Gong HQ, Xu ZH, Bai SN. Preferential localization of abscisic acid in primordial and nursing cells of reproductive organs of Arabidopsis and cucumber[J]. New Phytol, 2006, 170(3):459-466.
    [20]
    Gao W, Nan T, Tan G, Zhao H, Tan W, et al. Cellular and subcellular immunohistochemical localization and quantification of cadmium ions in wheat(Triticum aestivum)[J]. PLoS One, 2015, 10(5):e0123779.
    [21]
    Douchiche O, Driouich A, Morvan C. Spatial regulation of cell-wall structure in response to heavy metal stress:cadmium-induced alteration of the methyl-esterification pattern of homogalacturonans[J]. Ann Bot, 2010, 105:481-491.
    [22]
    Tanaka N, Fujita M, Handa H, Murayama S, Uemura M, et al. Proteomics of the rice cell:systematic identification of the protein populations in subcellular compartment[J]. Mol Genet Genomics, 2004, 271(5):566-576.
    [23]
    Titus DE, Hondred D, Becker WM. Purification and cha-racterization of hydroxypyruvate reductase from cucumber cotyledons[J]. Plant Physiol, 1983, 72(2):402-408.
    [24]
    Fürtauer L, Küstner L, Weckwerth W, Heyer AG, Nägele T. Resolving subcellular plant metabolism[J]. Plant J, 2019, 100(3):438-455.
    [25]
    Aidemark M, Andersson C, Rasmusson AG, Widell S. Regulation of callose synthase activity in situ in alamethicin-permeabilized Arabidopsis and tobacco suspension cells[J]. BMC Plant Biol, 2009, 9(27):1186-1471.
    [26]
    Maeshima M. Vacuolar H+-pyrophophatase[J]. Biochim Biophys Acta, 2000, 1465:37-51.
    [27]
    Vance JE. Phospholipid synthesis in a membrane fraction associated with mitochondria[J]. J Biol Chem, 1990, 265(13):7248-7256.
    [28]
    Kong FJ, Oyanagi A, Komatsu S. Cell wall proteome of wheat roots under flooding stress using gel-based and LC MS/MS-based proteomics approaches[J]. Biochim Biophys Acta, 2010, 1804(1):124-136.
    [29]
    Francin-Allami M, Merah K, Albenne C, Rogniaux H, Pavlovic M, et al. Cell wall proteomic of Brachypodium distachyon grains:a focus on cell wall remodeling proteins[J]. Proteomics, 2015, 15(13):2296-2306.
    [30]
    Bernfur K, Larsson O, Larsson C, Gustavsson N. Relative abundance of integral plasma membrane proteins in Arabidopsis leaf and root tissue determined by metabolic labeling and mass spectrometry[J]. PLoS One, 2013, 8(8):e71206.
    [31]
    张丽军,谢锦云,李选文,梁宋平. 真核细胞质膜蛋白质组研究进展[J]. 生命科学,2005, 17(5):398-403.

    Zhang LJ, Xie JY, Li XW, Liang SP. Progress in proteomic research of eukaryotic cell plasma membrane[J]. Chinese Bulletin of Life Sciences, 2005, 17(5):398-403.
    [32]
    Taylor NL, Heazlewood JL, Millar AH. The Arabidopsis thaliana 2-D gel mitochondrial proteome:refining the value of reference maps for assessing protein abundance, contaminants and post-translational modifications[J]. Proteomics, 2011, 11(9):1720-1733.
    [33]
    Lundquist PK, Poliakov A, Bhuiyan NH, Zybailov B, Sun Q, Wijk KJV. The functional network of the Arabidopsis plastoglobule proteome based on quantitative proteomics and genome-wide coexpression analysis[J]. Plant Phy-siol, 2012, 158(3):1172-1192.
    [34]
    Jaquinod M, Villiers F, Kieffer-Jaquinod S, Hugouvieux V, Bruley C, et al. A proteomics dissection of Arabidopsis thalianavacuoles isolated from cell culture[J]. Mol Cell Proteomics, 2007, 6(3):394-412.
    [35]
    Reumann S, Babujee L, Ma C, Wienkoop S, Siemsen T, et al. Proteome analysis of Arabidopsisleaf peroxisomes reveals novel targeting peptides, metabolic pathways, and defense mechanisms[J]. Plant Cell, 2007, 19(10):3170-3193.
    [36]
    Reumann S, Quan S, Aung K, Yang P, Manandhar-Shrestha K, et al. In-depth proteome analysis of Arabidopsis leaf peroxisomes combined with in vivo subcellular targeting verification indicates novel metabolic and regulatory functions of peroxisomes[J]. Plant Physiol, 2009, 150(1):125-143.
    [37]
    Barba-Espín G, Dedvisitsakul P, Hägglund P, Svensson B, Finnie C. Gibberellic acid-induced aleurone layers responding to heat shock or tunicamycin provide insight into the N-glycoproteome, protein secretion, and endoplasmic reticulum stress[J]. Plant Physiol, 2014, 164(2):951-965.
    [38]
    Behrens C, Blume C, Senkler M, Eubel H, Peterhänsel C, Braun HP. The ‘protein complex proteome’ of chloroplasts in Arabidopsis thaliana[J]. J Proteomics, 2013, 91:73-83.
    [39]
    Wang X, Komatsu S. Plant subcellular proteomics:application for exploring optimal cell function in soybean[J]. J Proteomics, 2016, 143:45-56.
    [40]
    Pierleoni A, Martelli PL, Fariselli P, Casadio R. BaCelLo:a balanced subcellular localization predictor[J]. Bioinformatics, 2006, 22(14):e408-e416.
    [41]
    Dobson L, Reményi I, Tusnády GE. CCTOP:a consensus constrained TOPology prediction web server[J]. Nucleic Acids Res, 2015, 43(W1):W408-W412.
    [42]
    Emanuelsson O, Nielsen H, Heijine GV. ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites[J]. Protein Sci, 1999, 8(5):978-984.
    [43]
    Almagro Armenteros JJ, Sønderby C, Sønderby SK, Nielsen H, Winther O. DeepLoc:prediction of protein subcellular localization using deep learning[J]. Bioinforma-tics, 2017, 33(21):3387-3395.
    [44]
    Savojardo C, Martelli PL, Fariselli P, Casadio R. DeepSig:deep learning improves signal peptide detection in protein[J]. Bioinformatics, 2018, 34(10):1690-1696.
    [45]
    Pierleoni A, Martelli PL, Fariselli P, Casadio R. eSLDB:eukaryotic subcellular localization database[J]. Nucleic Acids Res, 2007, 35(Database issue):D208-D212.
    [46]
    Sperschneider J, Catanzariti AM, DeBoer K, Petre B, Gardiner DM, et al. LOCALIZER:subcellular localization prediction of both plant and effector proteins in the plant cell[J]. Sci Rep, 2017, 16(7):44598.
    [47]
    Nair R, Rost B. LOCnet and LOCtarget:sub-cellular loca-lization for structural genomics targets[J]. Nucleic Acids Res, 2004, 32:W517-W521.
    [48]
    Goldberg T, Hecht M, Hamp T, Karl T, Yachdav G, et al. LocTree3 prediction of localization[J]. Nucleic Acids Res, 2014, 42:W350-W355.
    [49]
    Nugent T, Jones DT. Transmembrane protein topology prediction using support vector machines[J]. BMC Bioinformatics, 2009, 10:159.
    [50]
    Wan S, Mak MW, Kung SY. mGOASVM:multi-label protein subcellular localization based on gene ontology and support vector machines[J]. BMC Bioinformatics, 2012, 13:290.
    [51]
    Bernhofer M, Goldberg T, Wolf S, Ahmed M, Zaugg J, et al. NLSdb-major update for database of nuclear localization signals and nuclear export signals[J]. Nucleic Acids Res, 2018, 46(1):503-508.
    [52]
    Viklund H, Elofsson A, Notes A. OCTOPUS:improving topology prediction by two-track ANN-based preference scores and an extended topological grammar[J]. Bioinformatics, 2008, 24(15):1662-1668.
    [53]
    Lu Z, Szafron D, Greiner R, Lu P, Wishart DS, et al. Predicting subcellular localization of protein using machine-learned classifiers[J]. Bioinformatics, 2004, 20(4):547-556.
    [54]
    Cokol M, Nair R, Rost B. Finding nuclear localization signals[J]. EMBO Rep, 2000, 1(5):411-415.
    [55]
    Hiller K, Grote A, Scheer M, Münch R, Jahn D. PrediSi:prediction of signal peptides and their cleavage positions[J]. Nucleic Acids Res, 2004, 32:W375-W379.
    [56]
    Small I, Peeters N, Legeai F, Lurin C. Predotar:a tool for rapidly screening proteomes for N-terminal targeting sequences[J]. Proteomics, 2004, 4(6):1581-1590.
    [57]
    Yu NY, Wagner JR, Laird MR, Melli G, Rey S, et al. PSORTb 3.0:improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes[J]. Bioinformatics, 2010, 26(13):1608-1615.
    [58]
    Almagro Armententeros JJ, Tsirigos KD, Sønderby CK, Petersen TN, Winther O, et al. SignalP 5.0 improve signal peptide predictions using deep neural networks[J]. Nat Biotechnol, 2019, 37(4):420-423.
    [59]
    Zhang YZ, Shen HB. Signal-3L 2.0:A hierarchical mixture model for enhancing protein signal peptide prediction by incorporating residue-domain cross-level features[J]. J Chem Inf Model, 2017, 57(4):988-999.
    [60]
    Peters C, Tsirigos KD, Shu N, Elofsson A. Improved topology prediction using the terminal hydrophobic helices rule[J]. Bioinformatics, 2016, 32(8):1158-1162.
    [61]
    Emanuelsson O, Nielsen H, Brunak S, von Heijne G. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence[J]. J Mol Biol, 2000, 300(4):1005-1016.
    [62]
    Tsirigos KD, Peters C, Shu N, Käll L, Elofsson A. The TOPCONS web server for consensus prediction of membrane protein topology and signal peptides[J]. Nucleic Acids Res, 2015, 43:W401-W407.
    [63]
    Abe S, Nagai T, Masukawa M, Okumoto K, Homma Y, et al. Localization of protein kinase NDR2 to peroxisomes and its role in Ciliogenesis[J]. J Biol Chem, 2017, 292(10):4089-4098.
    [64]
    K hler S, Delwiche CF, Denny PW, Tilney LG, Webster P, et al. A plastid of probable green algal origin in apicomplexan parasites[J]. Science, 1997, 275(5305):1485-1489.
    [65]
    Lee MH, Min MK, Lee YJ, Jin JB, Shin DH, et al. ADP-ribosylation factor 1 of Arabidopsis plays a critical role in intracellular trafficking and maintenance of endoplasmic reticulum morphology in Arabidopsis[J]. Plant Physiol, 2002, 129(4):1507-1520.
    [66]
    Brandizzi F, Hanton S, DaSilva LLP, Boevink P, Evans D, et al. ER quality control can lead to retrograde transport from the ER lumen to the cytosol and the nucleoplasm in plants[J]. Plant J, 2003, 34(3):269-281.
    [67]
    Irons SL, Evans DE, Brandizzi F. The first 238 amino acids of the human lamin B receptor are targeted to the nuclear envelope in plants[J]. J Exp Bot, 2003, 54(384):943-950.
    [68]
    Saint-Jore-Dupa C, Nebenführ A, Boulaflous A, Follet-Gueye ML, Plasson C, et al. Plant N-glycan processing enzymes employ different targeting mechanisms for their spatial arrangement along the secretory pathway[J]. Plant Cell, 2006, 18(11):3182-3200.
    [69]
    Ito Y, Uemura T, Nakano A. The Golgi entry core compartment functions as a COPII-independent scaffold for ER-to-Golgi transport in plant cells[J]. J Cell Sci, 2018, 131(2):jcs203893.
    [70]
    Baldwin TC, Handford MG, Yuseff M, Orellana A, Dupree P. Identification and characterization of GONST1, a Golgi-localized GDP-mannose transporter in Arabidopsis[J]. Plant Cell, 2001, 13(10):2283-2295.
    [71]
    Renna L, Hanton SL, Stefano G, Bortolotti L, Misra V, Brandizzi F. Identification and characterization of AtCASP, a plant transmembrane Golgi matrix protein[J]. Plant Mol Biol, 2005, 58(1):109-122.
    [72]
    Sato K, Nishikawa S, Nakano A. Membrane protein retrieval from the Golgi apparatus to the endoplasmic reticulum(ER):characterization of the RER1 gene product as a component involved in ER localization of Sec12p[J]. Mol Biol Cell, 1995, 6(11):1459-1477.
    [73]
    Leung KP, Luo M, Gao C, Zeng Y, Zhao Q, et al. Arabidopsis ENDOMEMBRANE PROTEIN 12 contributes to the endoplasmic reticulum stress response by regulating K/HDEL receptor trafficking[J]. Plant Cell, 2019, 31(7):1669.
    [74]
    Wang T, Li L, Hong W. SNARE protein in membrane trafficking[J]. Traffic, 2017, 18(12):767-775.
    [75]
    Parsons HT, Stevens TJ, McFarlane HE, Vidal-Melgosa S, Griss J, et al. Separating Golgi proteins from cis to trans reveals underlying properties of cisternal localization[J]. Plant Cell, 2019, 31(9):2010-2034.
    [76]
    Feeney M, Frigerio L, Kohalmi SE, Cui Y, Menassa R. Reprogramming cells to study vacuolar development[J]. Front Plant Sci, 2013, 3(4):493.
    [77]
    Gattolin S, Sorieul M, Frigerio L. Mapping of tonoplast intrinsic proteins in maturing and germinating Arabidopsis seeds reveals dual localization of embryonic TIPs to the tonoplast and plasma membrane[J]. Mol Plant, 2011, 4(1):180-189.
    [78]
    Sato MH, Nakamura N, Ohsumi Y, Kouchi H, Kondo M, et al. TheAtVAM3 encodes a syntaxin-related molecule implicated in the vacuolar assembly in Arabidopsis thaliana[J]. J Biol Chem, 1997, 272(39):24530-24535.
    [79]
    Uemura T, Yoshimura SH, Takeyasu K, Sato MH. Vacuolar membrane dynamics revealed by GFP-AtVam3 fusion protein[J]. Genes Cells, 2002, 7(7):743-753.
    [80]
    Dettmer J, Hong-Hermesdorf A, Stierhof YD, Schumacher K. Vacuolar H+-ATPase activity is required for endocytic and secretory trafficking in Arabidopsis[J]. Plant Cell, 2006, 18(3):715-730.
    [81]
    Wang X, Cai Y, Wang H, Zeng Y, Zhuang X, Li B, et al. Trans-Golgi network-located AP1 gamma adaptins me-diate dileucine motif-directed vacuolar targeting in Arabidopsis[J]. Plant Cell, 2014, 26(10):4102-4118.
    [82]
    Robinson DG, Jiang L, Schumacher K. The endosomal system of plants:charting new and familiar territories[J]. Plant Physiol, 2008, 147(4):1482-1492.
    [83]
    Rymer Ł, Kempiński B, Chelstowska A, Skoneczny M. The budding yeast Pex5p receptor directs Fox2 and Cta1p into peroxisomes via its N-terminal region near the FxxxW domain[J]. J Cell Sci, 2018, 131(17):jcs216986.
    [84]
    Chu Y, Dodiya H, Aebischer P, Olanow CW, Kordower JH. Alterations in lysosomal and proteasomal markers in Parkinson's disease:relationship to alpha-synuclein inclusions[J]. Neurobiol Dis, 2009, 35(3):385-398.
    [85]
    Okamoto K, SakoY. Recent advances in FRET for the study of protein interactions and dynamics[J]. Curr Opin Struct Biol, 2017, 46:16-23.
    [86]
    Deal J, Pleshinger DJ, Johnson SC, Leavesley SJ, Rich TC. Milestones in the development and implementation of FRET-based sensors of intracellular signals:a biological perspective of the history of FRET[J]. Cell Signal, 2020, 75:109769.
  • Related Articles

    [1]HU Guang-ming, XIA Wen-juan, ZHENG Li, RAO Hang-kong, LEI Ming, WANG Jian, ZHAO Ting-ting, LI Zuo-zhou, ZHONG Cai-hong. Investigation and fruit genetic diversity analysis of wild Actinidia germplasm resources in Tongshan County, Hubei Province[J]. Plant Science Journal, 2021, 39(6): 620-631. DOI: 10.11913/PSJ.2095-0837.2021.60620
    [2]Chen Mei-Yan, Zhao Ting-Ting, Liu Xiao-Li, Han Fei, Zhang Peng, Zhong Cai-Hong. Factor analysis and comprehensive evaluation of fruit quality of ‘Jinyan’ kiwifruit (Actinidia eriantha×Actinidia chinensis)[J]. Plant Science Journal, 2021, 39(1): 85-92. DOI: 10.11913/PSJ.2095-0837.2021.10085
    [3]WANG Rong, HE Zhi-Chong, FANG Xue-Min, CHEN Dan-Li, WANG Qi, MENG Jia-Song, ZHAO Da-Qiu. Analysis of Phenotypic Diversity of Paeonia lactiflora Cultivars in Yangzhou[J]. Plant Science Journal, 2016, 34(6): 901-908. DOI: 10.11913/PSJ.2095-0837.2016.60901
    [4]YANG Xiao-Hui, ZHAO Xue-Li, GAO Xin-Fen. Morphological Variation and ITS Sequence Analysis of the Indigofera szechuensis Complex[J]. Plant Science Journal, 2015, 33(6): 727-733. DOI: 10.11913/PSJ.2095-0837.2015.60727
    [5]CAI Jun-Long, LU Jin-Qing, LI Qiang, GUO Sheng-Nan, DAI Yi. Analysis on Volatile Components of Caryophylli Flos from Different Habitats[J]. Plant Science Journal, 2015, 33(2): 251-258. DOI: 10.11913/PSJ.2095-0837.2015.20251
    [6]CHEN Sui-Qing, SONG Jun, CUI Can. Research and Evaluation on Chemical Fingerprints of Diterpenoids from Rabdosia rubescens[J]. Plant Science Journal, 2012, 30(5): 519-527. DOI: 10.3724/SP.J.1142.2012.50519
    [7]SHU Xiao, YANG Zhi-Ling, YANG Xu, DUAN Hong-Ping, YU Hua-Hui, LIU Ruo-Nan. Variation in Traits of Magnolia officinalis Seedlings from Different Provenances and Their Principal Component Analysis[J]. Plant Science Journal, 2010, 28(5): 623-630.
    [8]LI Ren-Wei, ZHANG Hung-Ta. Analysis on the Components of Seed Plant Flora in Sichuan Region[J]. Plant Science Journal, 2002, 20(5): 381-386.
    [9]Xiong Xiufang, Zhang Yinhua, Gong Fujun, Nan Peng, Yuan Ping, Wang Guoliang. STUDIES ON THE CHEMICAL CONSTITUENTS OF THE VOLATILE OIL FROM CHENOPODIUM AMBROSIOIDES L.GROWN IN HUBEI[J]. Plant Science Journal, 1999, 17(3): 244-248.
    [10]He Jingbiao, Sun Xiangzhong, Wang Huiqin, Zhong Yang, Huang Deshi. ANALYSES ON THE CHARACTERS OF THE GENUS OTTELIA (HYDROCHARITACEAE) IN CHINA[J]. Plant Science Journal, 1992, 10(2): 101-108.
  • Cited by

    Periodical cited type(24)

    1. 胡星,胡纪龙,张敏,刘娇,黄晓霞. 外源NO对盐胁迫下八角金盘叶片生理特性及解剖结构的影响. 西南林业大学学报(自然科学). 2025(01): 68-77 .
    2. 张伟溪,丁密,苏晓华,李爱平,王小江,余金金,李政宏,黄秦军,丁昌俊. 小叶杨×欧洲黑杨杂交F_1代生长及叶片解剖结构杂种优势分析与抗旱性评价. 南京林业大学学报(自然科学版). 2025(01): 46-58 .
    3. 赵莹. 叶形与叶色在园林景观设计中的应用. 分子植物育种. 2025(02): 622-627 .
    4. 邱彦芬,杨湉,吴裕. 基于叶片解剖结构评价不同倍性橡胶树无性系抗旱性. 热带农业科技. 2024(02): 61-67 .
    5. 萨其拉,张霞,朱琳,康萨如拉. 长期不同放牧强度下荒漠草原优势种无芒隐子草叶片解剖结构变化. 植物生态学报. 2024(03): 331-340 .
    6. 胡光明,肖涛,彭家清,李大卫,田华,王华玲,肖丽丽,程均欢,黄海雷,吴伟,钟彩虹. 基于叶片形态及显微特征评价12个猕猴桃栽培品种的抗旱性. 果树学报. 2024(05): 911-928 .
    7. 刘柯珍,何诚. 微观视角下防火树种特征研究动态. 西南林业大学学报(自然科学). 2024(03): 212-220 .
    8. 肖刚,赵峰,李世民,刘帅,路艳. 高速公路中央分隔带绿化植物对干旱胁迫的生理响应和抗旱性评价. 山东交通科技. 2024(03): 81-85 .
    9. 罗玲,刘伟,梁东,马一君,李然,吕秀兰. 不同架形对阳光玫瑰葡萄叶幕生态和高温下应逆生理的影响. 果树学报. 2024(12): 2444-2462 .
    10. 侯立伟,鲁绍伟,李少宁,赵娜,徐晓天. 城市绿化灌木耐旱性评价及灌溉制度研究进展. 世界林业研究. 2023(01): 45-51 .
    11. 孙一鑫,马乐乐,苗丽丽,何佳星,李建明. 基于光辐射时滞效应的温室番茄蒸腾量模型的构建. 西北农林科技大学学报(自然科学版). 2023(02): 83-92 .
    12. 何桥,向海洋,向芳,黄明,陈栋,向素琼,郭启高,梁国鲁,熊伟. 野生李用于巫山脆李砧木的适宜性研究. 西南大学学报(自然科学版). 2023(03): 74-87 .
    13. 马静,贺熙勇,陶亮,吴超,李志强,宫丽丹. 基于叶片解剖结构的澳洲坚果种质资源抗旱性评价. 热带作物学报. 2023(07): 1392-1399 .
    14. 仇杰,高超,罗洪发. 贵州西北喀斯特区古茶树叶片解剖结构及抗旱性评价. 西北植物学报. 2023(07): 1170-1184 .
    15. 董淑龙,马姜明,莫燕华,黎露. 红花檵木种质资源与应用研究综述. 广西林业科学. 2022(02): 290-297 .
    16. 董志君,高健洲,于晓南. 烯效唑对盆栽芍药生理特性及显微结构的影响. 北京林业大学学报. 2022(07): 117-125 .
    17. 王菲,程小毛,肖云龙,黄晓霞. 千家寨野生古茶树叶片解剖结构和化学组分计量特征对海拔梯度的适应. 生态学杂志. 2021(07): 1958-1968 .
    18. 景晨娟,陈雪峰,王端,季文章,武晓红. 三个李子品种叶片结构差异及其抗旱性分析. 北方园艺. 2021(15): 27-34 .
    19. 钟灶发,张利娟,高思思,彭婷. 干旱胁迫下4种柑橘砧木叶片细胞学特征及抗旱性比较. 园艺学报. 2021(08): 1579-1588 .
    20. 周荧,王頔,聂飞. 贵州省两个蓝莓品种组培苗和扦插苗干旱胁迫响应. 南方农业. 2021(20): 171-174+178 .
    21. 郭燕,张树航,李颖,张馨方,王广鹏. 中国板栗238份品种(系)叶片形态、解剖结构及其抗旱性评价. 园艺学报. 2020(06): 1033-1046 .
    22. 董章宏,尹亚梅,徐剑,李显煌,瞿绍宏,辛静,常晓勇,辛培尧. 滇杨雌、雄株茎叶解剖结构差异分析. 云南农业大学学报(自然科学). 2020(03): 502-510 .
    23. 谭莎,赖路伟,黄永芳,叶小萍,谭健彬,许雄坚. 3个山茶品种对干旱胁迫的生理响应. 亚热带植物科学. 2020(05): 335-339 .
    24. 崔杰,洪文君,刘俊,陈伟玉,何书奋,罗金环. 极小种群野生植物海南假韶子结构解剖特征研究. 广东农业科学. 2019(11): 31-36 .

    Other cited types(22)

Catalog

    Article views PDF downloads Cited by(46)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return