Advance Search
Zhao Cai-Mei, Huang Xing-Qi, Yin Fu-You, Li Ding-Qin, Chen Yue, Chen Ling, Cheng Zai-Quan. Research progress on NAC transcription factor family in Oryza sativa L.[J]. Plant Science Journal, 2020, 38(2): 278-287. DOI: 10.11913/PSJ.2095-0837.2020.20278
Citation: Zhao Cai-Mei, Huang Xing-Qi, Yin Fu-You, Li Ding-Qin, Chen Yue, Chen Ling, Cheng Zai-Quan. Research progress on NAC transcription factor family in Oryza sativa L.[J]. Plant Science Journal, 2020, 38(2): 278-287. DOI: 10.11913/PSJ.2095-0837.2020.20278

Research progress on NAC transcription factor family in Oryza sativa L.

Funds: 

This work was supported by grants from the National Important Researching and Planning Project of China (2016YFD100101-10-3), National Key Breeding Special of China (2017YFD0100202), and Yunnan Technology Talents and Platform Project (2019HB034).

More Information
  • Received Date: August 07, 2019
  • Revised Date: October 24, 2019
  • Available Online: October 31, 2022
  • Published Date: April 27, 2020
  • The NAC transcription factor family is an important class of transcriptional regulatory factors and is found ubiquitously in plants. In rice (Oryza sativa L.), the NAC gene family is involved in cell growth, tissue development, organ aging, and adventitious stress responses, and plays an important role in responding to external environmental stimuli. In this paper, we introduce the structural characteristics of the O. sativa NAC transcription factor family and its involvement in regulating plant growth and development. We also discuss the involvement of NAC genes in defensive responses to cold, salt, and pathogenic bacterial stress. Future research directions are analyzed and considered. Overall, this paper provides theoretical guidance and reference for relevant future study.
  • [1]
    Hussey SG, Saïdi MN, Hefer CA, Myburg AA, Grima-Pettenati J. Structural, evolutionary and functional analysis of the NAC domain protein family in Eucalyptus[J]. New Phytol, 2015, 206(4):1337-1350.
    [2]
    唐宽刚, 任美艳, 张文君, 庞新跃, 薛敏, 等. 沙冬青 AmNAC6 基因的克隆与功能初步分析[J]. 植物科学学报, 2018, 36(5):705-712.

    Tang KG, Ren MY, Zhang WJ, Pang XY, Xue M, et al. Cloning and preliminary functional analysis of AmNAC6 from Ammopiptanthus mongolicus[J]. Plant Science Journal, 2018, 36(5):705-712.
    [3]
    Chung PJ, Jung H, Yang DC, Kim JK. Genome-wide analyses of direct target genes for four rice NAC-domain transcription factors involved in drought tolerance[J]. BMC Genomics, 2018, 19(1):40.
    [4]
    Puranik S, Sahu PP, Srivastava PS, Prasad M. NAC:regu-lation and role in stress tolerance[J]. Trends Plant, 2012, 17(6):369-381.
    [5]
    Nuruzzaman M, Sharoni AM, Kikuchi S. Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants[J]. Front Microbiol, 2013, 4:248.
    [6]
    Zhang J, Li L, Huang LP, Zhang MM, Chen ZY, et al. Maize NAC-domain retained splice variants act as dominant negatives to interfere with the full-length NAC counterparts[J]. Plant Sci, 2019, 289:110256.
    [7]
    Jensen MK, Kjaersgaard T, Nielsen MM, Galberg P, Petersen K, et al. The Arabidopsis thaliana NAC transcription factor family:structure-function relationships and determinants of ANAC019 stress signalling[J]. Bio J, 2010, 426(2):183-196.
    [8]
    Ernst HA, Olsen AN, Skriver K, Larsen S, Leggio LL. Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors[J]. Embo Rep, 2014, 5(3):297-303.
    [9]
    Zhang Y, Yun Z, Gong L, Qu H, Duan X, et al. Comparison of miRNA evolution and function in plants and animals[J]. Microrna, 2018, 7(1):4-10.
    [10]
    Lee MH, Jeon HS, Kim HG, Park OK. An Arabidopsis NAC transcription factor NAC4 promotes pathogen-induced cell death under negative regulation by microRNA164[J].New Phytol, 2017, 214(1):343-360.
    [11]
    Guo HS, Xie Q, Fei JF, Chua NH. MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development[J]. Plant Cell, 2005, 17(5):1376-1386.
    [12]
    Lee MH, Jeon HS, Kim HG, Park OK. An Arabidopsis NAC transcription factor NAC4 promtes pathogen-induced cell death under negative regulation by microRNA164[J]. 2017, New Phytol, 214(1):343-360.
    [13]
    Li YF, Zheng Y, Addo-Quaye C, Zhang L, Saini A, et al. Transcriptome-wide identification of microRNA targets in rice[J]. Plant J, 2010, 62(5):742-759.
    [14]
    Fang Y, Xie K, Xiong L. Conserved miR164-targeted NAC genes negatively regulate drought resistance in rice[J]. J Exp Bot, 2014, 65(8):2119-2135.
    [15]
    Xu X, Bai H, Liu C, Chen E, Chen Q, et al. Genome-wide analysis of microRNAs and their target genes related to leaf senescence of rice[J]. PLoS One, 2014, 9(12):e114313.
    [16]
    Xie Q, Guo HS, Dallman G, Fang S, Weissman AM, et al. SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals[J]. Nature, 2002, 419(6903):167-170.
    [17]
    Kleinow T, Himbert S, Krenz B, Jeske H, Koncz C. NAC domain transcription factor ATAF1 interacts with SNF1-related kinases and silencing of its subfamily causes severe developmental defects in Arabidopsis[J]. Plant Sci, 2009, 177(4):360-370.
    [18]
    Kaneda T, Taga Y, Takai R, Iwano M, Matsui H, et al. The transcription factor OsNAC4 is a key positive regulator of plant hypersensitive cell death[J]. EMBO J, 2009, 28(7):926-936.
    [19]
    Kikuchi K, Ueguehi-Tanaka M, Yoshida KT, Nagato Y, Matsusoka M, et al. Molecular analysis of the NAC gene family in rice[J]. Mol Gen Genet, 2000, 262(6):1047-1051.
    [20]
    Ooka H. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana[J]. DNA Res, 2003, 10(6):239-247.
    [21]
    Fang YJ, You J, Xie K, Xie WB, Xiong LZ. Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice[J]. Mol Genet Genomics, 2008, 280:547-563.
    [22]
    Nuruzzaman M, Manimekalai R, Sharoni AM, Satoh K, Kondoh H, et al. Genome-wide analysis of NAC transcription factor family in rice[J]. Gene, 2010, 465(1-2):30-44.
    [23]
    段俊枝, 李莹, 赵明忠, 魏小春, 任银铃. NAC转录因子在水稻抗逆基因工程中的应用进展[J]. 中国稻米, 2017, 23(6):37-42.

    Duan JZ, Li Y, Zhao MZ, Wei XC, Ren YL. Progress on application of NAC transcripton factors in rice stress tole-rance genetic engineering[J]. China Rice, 2017, 23(6):37-42.
    [24]
    孙利军. 水稻ONAC家族基因重叠表达特性及其在抗病逆境中的功能研究[D]. 杭州:浙江大学, 2012.
    [25]
    Wang Z, Dane F. NAC(NAM/ATAF/CUC) transcription factors in different stresses and their signaling pathway[J]. Acta Physiol Plantararum, 2013, 35:1397-1408.
    [26]
    Huang DB, Wang SG, Zhang BC, Shang-Guan KK, Shi YY, et al. A gibberellin-mediated Della-NAC signaling cascade regulates cellulose synthesis in rice[J]. Plant Cell, 2015, 27(6):1681-1696.
    [27]
    Chen X, Lu SC, Wang YF, Zhang X, Lü B, et al. OsNAC2 encoding a NAC transcription factor that affects plant height through mediating the gibberellic acid pathway in rice[J]. Plant J, 2015, 82(2):302-314.
    [28]
    Mao CJ, Lu SC, Lü B, Zhang B, Shen JB, et al.A rice NAC transcription factor promotes leaf senescence via ABA biosynthesis[J]. Plant Physiol, 2017, 174(3):1747-1763.
    [29]
    Shen JB, Lü B, Luo LQ, He JM, Mao CJ, et al. The NAC-type transcription factor OsNAC2 regulates ABA-depen-dent genes and abiotic stress tolerance in rice[J]. Sci Rep, 2017, 7:40641.
    [30]
    Zhou Y, Huang WF, Liu L, Chen TY, Zhou F, et al. Identification and functional characterization of a rice NAC gene involved in the regulation of leaf senescence[J]. BMC Plant Biol, 2013, 13(1):132.
    [31]
    El Mannai Y, Akabane K, Hiratsu K, Satoh-nagasawa N, Wabiko H. The NAC transcription factor gene OsY37(ONAC011) promotes leaf senescence and accelerates heading time in rice[J]. Int J Mol Sci, 2017, 18(10):2165.
    [32]
    Ye Y, Wu K, Chen J, Liu Q, Wu Y, et al. OsSND2, a NAC family transcription factor, is involved in secondary cell wall biosynthesis through regulating MYBs expression in rice[J]. Rice, 2018, 11(1):36.
    [33]
    Yokotani N, Ichikawa T, Kondou Y, Matsui M, Hirochika H, et al. Tolerance to various environmental stresses conferred by the salt-responsive rice gene ONAC063 in transgenic Arabidopsis[J]. Planta, 2009, 229(5):1065-1075.
    [34]
    Sakuraba Y, Piao W, Lim JH, Han SH, Kim YS, et al. Rice ONAC106 inhibits leaf senescence and increases salt tolerance and tiller angle[J]. Plant Cell Physiol, 2015, 56(12):2325-2339.
    [35]
    Wang B, Zhong ZH, Zhang HH, Wang X, Liu BL, et al. Targeted mutagenesis of NAC transcription factor gene, OsNAC041, leading to salt sensitivity in rice[J]. Rice Sci, 2019, 26(2):98-108.
    [36]
    Fang YJ, Liao KF, Du H, Xu Y, Song HZ, et al. A stress-responsive NAC transcripton factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice[J]. J Exp Bot, 2015, 66(21):6803-6817.
    [37]
    Gao F, Xiong AS, Peng RH, Jin XF, Zhu B, et al. OsNAC52, a rice NAC transcription factor, potentially responds to ABA and confers drought tolerance in transge-nic plants[J]. Plant cell Tissue Organ Cult, 2010, 100(3):255-262.
    [38]
    Hu HH, Dai MQ, Yao JL, Xiao BZ, Xiong LH. Over-expressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice[J]. Proc Natl Acad Sci USA, 2006, 103(35):12987-12992.
    [39]
    Liu GZ, Li XL, Jin SX, Liu XY, Zhu LF, et al. Overexpression of rice NAC gene SNAC1 improves drought and salt tolerance by enhancing root development and reducing transpiration rate in transgenic cotton[J]. PLoS One, 2014, 9(7):e86895.
    [40]
    Redillas C, Jeong JS, Kim YS, Jung H, Bang SW, et al. The overexpression of OsNAC9alters the root architecture of rice plants enhancing drought resistance and grain yield under field conditions[J]. Plant Biotechnol J, 2012, 10(7):792-805.
    [41]
    You J, Zong W, Du H, Hu HH, Xiong LZ. A special member of the rice SRO family, OsSRO1c, mediates responses to multiple abiotic stresses through interaction with various transcription factors[J]. Plant Mol Biol, 2014, 84(6):693-705.
    [42]
    You J, Zong W, Hu HH, Li XH, Xiao JH, et al. A STRESS-RESPONSIVE NAC1-regulated protein phosphatase gene rice protein phosphatase18 modulates drought and oxidative stress tolerance through abscisic acid-independent reactive oxygen species scavenging in rice[J]. Plant Physiol, 2014, 166(4):2100-2114.
    [43]
    Zheng XN, Zhen B, Lu GJ, Han B. Overexpression of a NAC transcription factor enhances rice drought and salt tolerance[J]. Biochem Biophys Res Commun, 2009, 379(4):985-989.
    [44]
    Jeong JS, Kim YS, Baek KH, Jung H, Ha SH,et al. Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions[J]. Plant Physiol, 2010, 153(1):185-197.
    [45]
    Hong Y, Zhang H, Huang L, Li D, Song F. Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice[J]. Front Plant Sci, 2016, 7:4.
    [46]
    Hu HH, You J, Fang YJ, Zhu XY, Qi ZY, et al. Erratum to:characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice[J]. Plant Mol Biol, 2010, 72:567-568.
    [47]
    Rachmat A, Nugroho S, Sukma D, Aswidinnoor H. Overexpression of OsNAC6 transcription factor from Indonesia rice cultivar enhances drought and salt tolerance[J]. Emir J Food Agr, 2014, 26(6):519-527.
    [48]
    Chung PJ, Kim YS, Jeong JS, Park SH, Nahm BH,et al. The histone deacetylase OsHDAC1 epigenetically regulates the OsNAC6 gene that control seedling root growth in rice[J]. Plant J, 2009, 59(5):764-776.
    [49]
    Lee DK, Chung PJ, Jeong JS, Jang G, Bang SW, et al. The rice OsNAC6 transcription factor orchestrates multiple molecular mechanisms involving root structural adaptions and nicotianamine biosynthesis for drought tolerance[J]. Plant Biotechnol J, 2017,15(6):754-764.
    [50]
    Jeong JS, Kim YS, Redillas MC, Jang G, Jung H, et al. OsNAC5 overexpression enlarges root diameter in rice plants leading to enhanced drought tolerance and increased grain yield in the field[J]. Plant Biotechnol J, 2013, 11(1):101-114.
    [51]
    Chen X, Wang YF, Lü B, Li J, Luo LQ, et al. The NAC family transcription factor OsNAP confers abiotic stress response through the ABA pathway[J]. Plant Cell Physiol, 2014, 55(3):604-619.
    [52]
    Fang Y, Xie K, Xiong L. Conserved miR164-targeted NAC genes negatively regulate drought resistance in rice[J]. J Exp Bot, 2014, 65(8):2119-2135.
    [53]
    De Abreu Neto JB, Hurtado-Perez MC, Wimmer MA, Frei M. Genetic factors underlying boron toxicity tolerance in rice:genome-wide association study and transcriptomic analysis[J]. J Exp Bot, 2016, 68(3):687-700.
    [54]
    Huang L, Hong YB, Zhang HJ, Li DY, Song FM. Rice NAC transcription factor ONAC095 plays opposite roles in drought and cold stress tolerance[J]. BMC Plant Biol, 2016, 16(1):203.
    [55]
    Nakashima K, Tran LP, Nguyen DV, Fujita M, Maruyama K, et al. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice[J]. Plant J, 2007, 51(4):617-630.
    [56]
    Lin RM, Zhao WS, Meng XB, Wang M, Peng YL. Rice gene OsNAC19 encodes a novel NAC-domain transcription factor and responds to infection by Magnaporthe grisea[J]. Plant Sci, 2007, 172(1):120-130.
    [57]
    Sun LJ, Zhang HJ, Li DY, Huang L, Hong YB, et al. Functions of rice NAC transcriptional factors, ONAC122 and ONAC131, in defense responses against Magnaporthe grisea[J]. Plant Mol Biol, 2013, 81(1-2):41-56.
    [58]
    Yokotani N, Tsuchida-Mayama T, Ichikawa H, Mitsuda N, Ohme-Tak-agi M, et al. OsNAC111, a blast disease-response transcription factor in rice, positively regulates the expression of defense-related genes[J]. Mol Plant-Microbe Interact, 2014, 27(10):1027-1034.
    [59]
    Wang ZY, Xia YQ, Lin SY, Wang YR, Guo BH, et al. Osa-miR164a targets OsNAC60 and negatively regulates rice immunity against the blast fungus Magnaporthe oryzae[J]. Plant J, 2018, 95(4):584-597.
    [60]
    Yoshii M, Yamazaki M, Rakwal R, Kishi-kaboshi M, Miyao A, et al. The NAC transcription factor RIM1 of rice is a new regulator of jasmonate signaling[J]. Plant J, 2010, 61(5):804-815.
  • Related Articles

    [1]HU Guang-ming, XIA Wen-juan, ZHENG Li, RAO Hang-kong, LEI Ming, WANG Jian, ZHAO Ting-ting, LI Zuo-zhou, ZHONG Cai-hong. Investigation and fruit genetic diversity analysis of wild Actinidia germplasm resources in Tongshan County, Hubei Province[J]. Plant Science Journal, 2021, 39(6): 620-631. DOI: 10.11913/PSJ.2095-0837.2021.60620
    [2]Chen Mei-Yan, Zhao Ting-Ting, Liu Xiao-Li, Han Fei, Zhang Peng, Zhong Cai-Hong. Factor analysis and comprehensive evaluation of fruit quality of ‘Jinyan’ kiwifruit (Actinidia eriantha×Actinidia chinensis)[J]. Plant Science Journal, 2021, 39(1): 85-92. DOI: 10.11913/PSJ.2095-0837.2021.10085
    [3]WANG Rong, HE Zhi-Chong, FANG Xue-Min, CHEN Dan-Li, WANG Qi, MENG Jia-Song, ZHAO Da-Qiu. Analysis of Phenotypic Diversity of Paeonia lactiflora Cultivars in Yangzhou[J]. Plant Science Journal, 2016, 34(6): 901-908. DOI: 10.11913/PSJ.2095-0837.2016.60901
    [4]YANG Xiao-Hui, ZHAO Xue-Li, GAO Xin-Fen. Morphological Variation and ITS Sequence Analysis of the Indigofera szechuensis Complex[J]. Plant Science Journal, 2015, 33(6): 727-733. DOI: 10.11913/PSJ.2095-0837.2015.60727
    [5]CAI Jun-Long, LU Jin-Qing, LI Qiang, GUO Sheng-Nan, DAI Yi. Analysis on Volatile Components of Caryophylli Flos from Different Habitats[J]. Plant Science Journal, 2015, 33(2): 251-258. DOI: 10.11913/PSJ.2095-0837.2015.20251
    [6]CHEN Sui-Qing, SONG Jun, CUI Can. Research and Evaluation on Chemical Fingerprints of Diterpenoids from Rabdosia rubescens[J]. Plant Science Journal, 2012, 30(5): 519-527. DOI: 10.3724/SP.J.1142.2012.50519
    [7]SHU Xiao, YANG Zhi-Ling, YANG Xu, DUAN Hong-Ping, YU Hua-Hui, LIU Ruo-Nan. Variation in Traits of Magnolia officinalis Seedlings from Different Provenances and Their Principal Component Analysis[J]. Plant Science Journal, 2010, 28(5): 623-630.
    [8]LI Ren-Wei, ZHANG Hung-Ta. Analysis on the Components of Seed Plant Flora in Sichuan Region[J]. Plant Science Journal, 2002, 20(5): 381-386.
    [9]Xiong Xiufang, Zhang Yinhua, Gong Fujun, Nan Peng, Yuan Ping, Wang Guoliang. STUDIES ON THE CHEMICAL CONSTITUENTS OF THE VOLATILE OIL FROM CHENOPODIUM AMBROSIOIDES L.GROWN IN HUBEI[J]. Plant Science Journal, 1999, 17(3): 244-248.
    [10]He Jingbiao, Sun Xiangzhong, Wang Huiqin, Zhong Yang, Huang Deshi. ANALYSES ON THE CHARACTERS OF THE GENUS OTTELIA (HYDROCHARITACEAE) IN CHINA[J]. Plant Science Journal, 1992, 10(2): 101-108.
  • Cited by

    Periodical cited type(24)

    1. 胡星,胡纪龙,张敏,刘娇,黄晓霞. 外源NO对盐胁迫下八角金盘叶片生理特性及解剖结构的影响. 西南林业大学学报(自然科学). 2025(01): 68-77 .
    2. 张伟溪,丁密,苏晓华,李爱平,王小江,余金金,李政宏,黄秦军,丁昌俊. 小叶杨×欧洲黑杨杂交F_1代生长及叶片解剖结构杂种优势分析与抗旱性评价. 南京林业大学学报(自然科学版). 2025(01): 46-58 .
    3. 赵莹. 叶形与叶色在园林景观设计中的应用. 分子植物育种. 2025(02): 622-627 .
    4. 邱彦芬,杨湉,吴裕. 基于叶片解剖结构评价不同倍性橡胶树无性系抗旱性. 热带农业科技. 2024(02): 61-67 .
    5. 萨其拉,张霞,朱琳,康萨如拉. 长期不同放牧强度下荒漠草原优势种无芒隐子草叶片解剖结构变化. 植物生态学报. 2024(03): 331-340 .
    6. 胡光明,肖涛,彭家清,李大卫,田华,王华玲,肖丽丽,程均欢,黄海雷,吴伟,钟彩虹. 基于叶片形态及显微特征评价12个猕猴桃栽培品种的抗旱性. 果树学报. 2024(05): 911-928 .
    7. 刘柯珍,何诚. 微观视角下防火树种特征研究动态. 西南林业大学学报(自然科学). 2024(03): 212-220 .
    8. 肖刚,赵峰,李世民,刘帅,路艳. 高速公路中央分隔带绿化植物对干旱胁迫的生理响应和抗旱性评价. 山东交通科技. 2024(03): 81-85 .
    9. 罗玲,刘伟,梁东,马一君,李然,吕秀兰. 不同架形对阳光玫瑰葡萄叶幕生态和高温下应逆生理的影响. 果树学报. 2024(12): 2444-2462 .
    10. 侯立伟,鲁绍伟,李少宁,赵娜,徐晓天. 城市绿化灌木耐旱性评价及灌溉制度研究进展. 世界林业研究. 2023(01): 45-51 .
    11. 孙一鑫,马乐乐,苗丽丽,何佳星,李建明. 基于光辐射时滞效应的温室番茄蒸腾量模型的构建. 西北农林科技大学学报(自然科学版). 2023(02): 83-92 .
    12. 何桥,向海洋,向芳,黄明,陈栋,向素琼,郭启高,梁国鲁,熊伟. 野生李用于巫山脆李砧木的适宜性研究. 西南大学学报(自然科学版). 2023(03): 74-87 .
    13. 马静,贺熙勇,陶亮,吴超,李志强,宫丽丹. 基于叶片解剖结构的澳洲坚果种质资源抗旱性评价. 热带作物学报. 2023(07): 1392-1399 .
    14. 仇杰,高超,罗洪发. 贵州西北喀斯特区古茶树叶片解剖结构及抗旱性评价. 西北植物学报. 2023(07): 1170-1184 .
    15. 董淑龙,马姜明,莫燕华,黎露. 红花檵木种质资源与应用研究综述. 广西林业科学. 2022(02): 290-297 .
    16. 董志君,高健洲,于晓南. 烯效唑对盆栽芍药生理特性及显微结构的影响. 北京林业大学学报. 2022(07): 117-125 .
    17. 王菲,程小毛,肖云龙,黄晓霞. 千家寨野生古茶树叶片解剖结构和化学组分计量特征对海拔梯度的适应. 生态学杂志. 2021(07): 1958-1968 .
    18. 景晨娟,陈雪峰,王端,季文章,武晓红. 三个李子品种叶片结构差异及其抗旱性分析. 北方园艺. 2021(15): 27-34 .
    19. 钟灶发,张利娟,高思思,彭婷. 干旱胁迫下4种柑橘砧木叶片细胞学特征及抗旱性比较. 园艺学报. 2021(08): 1579-1588 .
    20. 周荧,王頔,聂飞. 贵州省两个蓝莓品种组培苗和扦插苗干旱胁迫响应. 南方农业. 2021(20): 171-174+178 .
    21. 郭燕,张树航,李颖,张馨方,王广鹏. 中国板栗238份品种(系)叶片形态、解剖结构及其抗旱性评价. 园艺学报. 2020(06): 1033-1046 .
    22. 董章宏,尹亚梅,徐剑,李显煌,瞿绍宏,辛静,常晓勇,辛培尧. 滇杨雌、雄株茎叶解剖结构差异分析. 云南农业大学学报(自然科学). 2020(03): 502-510 .
    23. 谭莎,赖路伟,黄永芳,叶小萍,谭健彬,许雄坚. 3个山茶品种对干旱胁迫的生理响应. 亚热带植物科学. 2020(05): 335-339 .
    24. 崔杰,洪文君,刘俊,陈伟玉,何书奋,罗金环. 极小种群野生植物海南假韶子结构解剖特征研究. 广东农业科学. 2019(11): 31-36 .

    Other cited types(22)

Catalog

    Article views (1767) PDF downloads (2147) Cited by(46)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return