Advance Search
Zheng Chuan, Yang Ying-Zeng, Luo Xiao-Feng, Dai Yu-Jia, Liu Wei-Guo, Yang Wen-Yu, Shu Kai. Current understanding of the roles of phytohormone abscisic acid in the regulation of plant root growth[J]. Plant Science Journal, 2019, 37(5): 690-698. DOI: 10.11913/PSJ.2095-0837.2019.50690
Citation: Zheng Chuan, Yang Ying-Zeng, Luo Xiao-Feng, Dai Yu-Jia, Liu Wei-Guo, Yang Wen-Yu, Shu Kai. Current understanding of the roles of phytohormone abscisic acid in the regulation of plant root growth[J]. Plant Science Journal, 2019, 37(5): 690-698. DOI: 10.11913/PSJ.2095-0837.2019.50690

Current understanding of the roles of phytohormone abscisic acid in the regulation of plant root growth

Funds: 

This work was supported by grants from the National Natural Science Foundation of China (31701064, 31872804) and National Key Research and Development Project (2017YFD0201300).

More Information
  • Received Date: March 27, 2019
  • Available Online: October 31, 2022
  • Published Date: October 27, 2019
  • Abscisic acid (ABA) is an important plant phytohormone and plays a key role in the regulation of seed development, dormancy, and germination, plant growth and flowering inhibition, and abiotic stress response pathways. ABA also interacts with other plant hormones, such as auxin and ethylene, to precisely regulate root growth, including that of preprimary roots, lateral roots, and root hairs. In this updated review, we summarize the molecular mechanisms by which ABA regulates plant root growth and development, focusing on the model plant Arabidopsis thaliana (L.) Heynh. We also discuss the proposed mechanism of ABA interaction with other plant hormones (such as GA) to regulate root growth, especially under abiotic stress conditions. Additionally, the future research directions in this field are discussed.
  • [1]
    Chen X, Yao Q, Gao X, Jiang C, Harberd N, Fu X. Shoot-to-root mobile transcription factor HY5 coordinates plant carbon and nitrogen acquisition[J]. Curr Biol, 2016, 26(5):640-646.
    [2]
    刘倩, 高娅妮, 柳旭, 周文楠, 王佺珍. 混合盐碱胁迫下接种丛枝菌根真菌和根瘤菌对紫花苜蓿生长的影响[J]. 生态学报, 2018, 38(17):6143-6155.

    Liu Q, Gao YN, Liu X, Zhou WN, Wang QZ. Effects of inoculation with arbuscular mycorrhizal fungi and rhizobia on growth of Medicago sativa under saline-alkaline stress[J]. Acta Ecologica Sinica, 2018, 38(17):6143-6155.
    [3]
    Paul K, Christine SD. The origin and early evolution of roots[J]. Plant Physiol, 2014, 166(2):570-580.
    [4]
    Laskowski M, Ten Tusscher KH. Periodic lateral root pri-ming:what makes it tick?[J]. Plant Cell, 2017, 29(3):432-444.
    [5]
    Steffens B, Rasmussen A. The physiology of adventitious roots[J]. Plant Physiol, 2016, 170(2):603-617.
    [6]
    莫亿伟, 李夏杰, 王海, 陈泽恺, 杨国, 王尉. IAA对水稻根毛形成与水通道蛋白基因表达关系的研究[J]. 中国农业科学, 2015, 48(21):4227-4239.

    Mo YW, Li XJ, Wang H, Chen ZK, Yang G, Wang W. Effect of auxin treatment on root hair formation and aquaporins genes expression in root hair of rice[J]. Scientia Agricultura Sinica, 2015, 48(21):4227-4239.
    [7]
    Dolan L. Root hair development in grasses and cereals (Poaceae)[J]. Curr Opin Genet Dev, 2017, 45:76-81.
    [8]
    Guy W, Sparks EE, Benfey PN. Genes and networks re-gulating root anatomy and architecture[J]. New Phytol, 2015, 208(1):26-38.
    [9]
    Bellini C, Pacurar DI, Perrone I. Adventitious roots and la-teral roots:similarities and differences[J]. Annu Rev Plant Biol, 2014, 65(65):639-666.
    [10]
    Ma Y, Cao J, He J, Chen Q, Li X, Yang Y. Molecular mechanism for the regulation of aba homeostasis during plant development and stress responses[J]. Int J Mol Sci, 2018, 19(11).
    [11]
    Yoshida T, Mogami J, Yamaguchi-Shinozaki K. Omics approaches toward defining the comprehensive abscisic acid signaling network in plants[J]. Plant Cell Physiol, 2015, 56(6):1043-1052.
    [12]
    Shu K, Chen Q, Wu Y, Liu R, Zhang H, Wang P, et al. ABI4 mediates antagonistic effects of abscisic acid and gibberellins at transcript and protein levels[J]. Plant J, 2016, 85(3):348-361.
    [13]
    Shu K, Zhang H, Wang S, Chen M, Wu Y, Tang S, et al. ABI4 regulates primary seed dormancy by regulating the biogenesis of abscisic acid and gibberellins in Arabidopsis[J]. Plos Genet, 2013, 9(6):e1003577.
    [14]
    Shu K, Liu XD, Xie Q, He ZH. Two faces of one seed:hormonal regulation of dormancy and germination[J]. Mol Plant, 2016, 9(1):34-45.
    [15]
    Shu K, Chen Q, Wu Y, Liu R, Zhang H, Wang S, et al. ABSCISIC ACID-INSENSITIVE 4 negatively regulates flowering through directly promoting Arabidopsis FLOWERING LOCUS C transcription[J]. J Exp Bot, 2016, 67(1):195-205.
    [16]
    Rowe JH, Topping JF, Liu J, Lindsey K. Abscisic acid regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin[J]. New Phytol, 2016, 211(1):225-239.
    [17]
    Thole JM, Beisner ER, Liu J, Venkova SV, Strader LC. Abscisic acid regulates root elongation through the activities of auxin and ethylene in Arabidopsis thaliana[J]. G3:Genes, Genomes, Genet, 2014, 4(7):1259-1274.
    [18]
    Tian H, Guo H, Dai X, Cheng Y, Zheng K, Wang X, et al. An aba down-regulated bHLH transcription repressor gene, bHLH129 regulates root elongation and aba response when overexpressed in Arabidopsis[J]. Sci Rep, 2015, 5(17587):17587.
    [19]
    Luo X, Chen Z, Gao J, Gong Z. Abscisic acid inhibits root growth in Arabidopsis through ethylene biosynthesis[J]. Plant J, 2014, 79(1):44-55.
    [20]
    Rogers ED, Benfey PN. Regulation of plant root system architecture:implications for crop advancement[J]. Curr Opin Biotechnol, 2015, 32(32C):93-98.
    [21]
    Lee Y, Lee WS, Kim SH. Hormonal regulation of stem cell maintenance in roots[J]. J Exp Bot, 2013, 64(5):1153.
    [22]
    Zhou W, Lozano-Torres JL, Blilou I, Zhang X, Zhai Q, Smant G, et al. A jasmonate signaling network activates root stem cells and promotes regeneration[J]. Cell, 2019, 177(4):942-956.
    [23]
    Yu Q, Tian H, Yue K, Liu J, Zhang B, Li X, et al. A ploop NTPase regulates quiescent center cell division and distal stem cell identity through the regulation of ros homeostasis in Arabidopsis root[J]. Plos Genet, 2016, 12(9):e1006175.
    [24]
    Scheres B, Krizek BA. Coordination of growth in root and shoot apices by AIL/PLT transcription factors[J]. Curr Opin Plant Biol, 2018, 41:95-101.
    [25]
    Di Mambro R, De Ruvo M, Pacifici E, Salvi E, Sozzani R, Benfey PN, et al. Auxin minimum triggers the developmental switch from cell division to cell differentiation in the Arabidopsis root[J]. Proc Natl Acad Sci U S A, 2017, 114(36):e7641-e7649.
    [26]
    Naramoto S. Polar transport in plants mediated by membrane transporters:focus on mechanisms of polar auxin transport[J]. Curr Opin Plant Biol, 2017, 40:8-14.
    [27]
    Doron SI, Dudy BZ. ABI4 mediates abscisic acid and cytokinin inhibition of lateral root formation by reducing polar auxin transport in Arabidopsis[J]. Plant Cell, 2011, 22(5):3560-3573.
    [28]
    Jan P, Jirí F. Auxin transport routes in plant development[J]. Development, 2009, 136(16):2675-2688.
    [29]
    Doncheva S, Amenós M, Poschenrieder C, Barceló J. Root cell patterning:a primary target for aluminium toxicity in maize[J]. J Exp Bot, 2005, 56(414):1213-1220.
    [30]
    Petricka JJ, Winter CM, Benfey PN. Control of Arabidopsis root development[J]. Annu Rev Plant Biol, 2012, 63(1):563-590.
    [31]
    Schaller GE, Street IH, Kieber JJ. Cytokinin and the cell cycle[J]. Curr Opin Plant Biol, 2014, 21(21C):7-15.
    [32]
    Hemerly A, Engler Jde A, Bergounioux C, Van Montagu M, Engler G, Inze D, et al. Dominant negative mutants of the Cdc2 kinase uncouple cell division from iterative plant development[J]. EMBO J, 1995, 14(16):3925-3936.
    [33]
    Boudolf V, Barrôco R, Engler Jde A, Verkest A, Beeckman T, Naudts M, et al. B1-type cyclin-dependent kinases are essential for the formation of stomatal complexes in Arabidopsis thaliana[J]. Plant Cell, 2004, 16(4):945-955.
    [34]
    Komaki S, Sugimoto K. Control of the plant cell cycle by developmental and environmental cues[J]. Plant Cell Physiol, 2012, 53(6):953-964.
    [35]
    Guanfang W, Hongzhi K, Yujin S, Xiaohong Z, Wei Z, Naomi A, et al. Genome-wide analysis of the cyclin family in Arabidopsis and comparative phylogenetic analysis of plant cyclin-like proteins[J]. Plant Physiol, 2004, 135(2):1084-1099.
    [36]
    Vieira P, De Almeida Engler J. Plant cyclin-dependent kinase inhibitors of the KRP family:potent inhibitors of root-knot nematode feeding sites in plant roots[J]. Front Plant Sci, 2017, 8:1514.
    [37]
    Kristiina H, Elodie B, Steffen V, Janice de AE, Dirk I, Tom B. Auxin-mediated cell cycle activation during early lateral root initiation[J]. Plant Cell, 2002, 14(10):2339-2351.
    [38]
    Cruz-Ramírez A1, Díaz-Triviño S, Blilou I, Grieneisen VA, Sozzani R, Zamioudis C, et al. A bistable circuit involving SCARECROW-RETINOBLASTOMA integrates cues to inform asymmetric stem cell division[J]. Cell, 2012, 150(5):1002-1015.
    [39]
    袁冰剑, 张森磊, 曹萌萌, 王志娟, 李霞. 脱落酸通过影响生长素合成及分布抑制拟南芥主根伸长[J]. 中国生态农业学报, 2014, 22(11):1341-1347.

    Yuan BJ, Zhang SL, Cao MM, Wang ZJ, Li X. ABA mo-dulates root growth through regulating auxin in Arabidopsis thaliana[J]. Chinese Journal of Eco-Agriculture, 2014, 22(11):1341-1347.
    [40]
    Wang L, Hua D, He J, Duan Y, Chen Z, Hong X, et al. Auxin Response Factor2(ARF2) and its regulated homeodomain gene HB33 mediate abscisic acid response in Arabidopsis[J]. PLoS Genet, 2011, 7(7):e1002172.
    [41]
    Promchuea S, Zhu Y, Chen Z, Jing Z, Gong Z. ARF2 coordinates with PLETHORAs and PINs to orchestrate ABA-mediated root meristem activity in Arabidopsis[J]. J Integr Plant Biol, 2017, 59(1):30-43.
    [42]
    Wang Z, Mao JL, Zhao YJ, Li CY, Xiang CB. L-cysteine inhibits root elongation through auxin/PLETHORA and SCR/SHR pathway in Arabidopsis thaliana[J]. J Integr Plant Biol, 2015, 57(2):186-197.
    [43]
    Larsen PB. Mechanisms of ethylene biosynthesis and response in plants[J]. Essays Biochem, 2015, 58(1):61-70.
    [44]
    Gazzarrini S, Tsai AY. Hormone cross-talk during seed germination[J]. Essays Biochem, 2015, 58:151-164.
    [45]
    Mamoona K, Wilfried R, Brigitte P. The role of hormones in the aging of plants-a mini-review[J]. Gerontology, 2013, 60(1):49-55.
    [46]
    Argueso CT, Hansen M, Kieber JJ. Regulation of ethylene biosynthesis[J]. J Plant Growth Regul, 2007, 26(2):92-105.
    [47]
    Swarup R, Parry G, Graham N, Allen T, Bennett M. Auxin cross-talk:integration of signalling pathways to control plant development[J]. Plant Mol Biol, 2002, 49(3-4):411-426.
    [48]
    Kamil RZ, Karin L, Steffen V, Radka P, Tom B, Jirí F, et al. Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution[J]. Plant Cell, 2007, 19(7):2197-2212.
    [49]
    Yoshida H, Nagata M, Saito K, Wang KL, Ecker JR. Arabidopsis ETO1 specifically interacts with and negatively regulates type 21-aminocyclopropane-1-carboxylate synthases[J]. Bmc Plant Biol, 2005, 5(1):14.
    [50]
    Shu-Hua C, Willmann MR, Huei-Chi C, Jen S. Calcium signaling through protein kinases. The Arabidopsis cal-cium-dependent protein kinase gene family[J]. Plant Physiol, 2002, 129(2):469.
    [51]
    Strader LC, Chen GL, Bartel B. Ethylene directs auxin to control root cell expansion[J]. Plant J, 2010, 64(5):874-884.
    [52]
    Yang L, Wang S, Sun L, Ruan M, Li S, He R, et al. Involvement of G6PD5 in ABA response during seed germination and root growth in Arabidopsis[J]. BMC Plant Biol, 2019, 19(1):44.
    [53]
    Sakaoka S, Mabuchi K, Morikami A, Tsukagoshi H. MYB30 regulates root cell elongation under abscisic acid signaling[J]. Commun Integr Biol, 2018, 11(4):e1526604.
    [54]
    Mabuchi K, Maki H, Itaya T, Suzuki T, Nomoto M, Sakaoka S, et al. MYB30 links ROS signaling, root cell elongation, and plant immune responses[J]. Proc Natl Acad Sci U S A, 2018, 115(20):E4710-E4719.
    [55]
    Ive DS, White PJ, A Glyn B, Lionel D, Boris P, Ilda C, et al. Analyzing lateral root development:how to move forward[J]. Plant Cell, 2012, 24(1):15-20.
    [56]
    Péret B, Rybel BD, Casimiro I, Benková E, Swarup R, Laplaze L, et al. Arabidopsis lateral root development:an emerging story[J]. Trends Plant Sci, 2009, 14(7):399-408.
    [57]
    Celenza JL Jr, Grisafi PL, Fink GR. A pathway for lateral root formation in Arabidopsis thaliana[J]. Genes Dev, 1995, 9(17):2131-2142.
    [58]
    Smet LD, Signora L, Beeckman T, Foyer CH, Zhang H. An abscisic acid-sensitive checkpoint in lateral root deve-lopment of Arabidopsis[J]. Plant J, 2010, 33(3):543-555.
    [59]
    Suzuki M, Kao CY, Cocciolone S, Mccarty DR. Maize VP1 complements Arabidopsis abi3 and confers a novel ABA/auxin interaction in roots[J]. Plant J, 2001, 28(4):409-418.
    [60]
    Brady SM, Sarkar SF, Bonetta D, McCourt P. The ABSCISIC ACID INSENSITIVE 3 (ABI3) gene is modulated by farnesylation and is involved in auxin signaling and lateral root development in Arabidopsis[J]. Plant J, 2010, 34(1):67-75.
    [61]
    Jeon E, Kang NY, Cho C, Joon Seo P, Chung Suh M, Kim J. LBD14/ASL17 positively regulates lateral root formation and is involved in aba response for root architecture in Arabidopsis[J]. Plant Cell Physiol, 2017, 58(12):2190-2201.
    [62]
    Salazar-Henao JE, Vélez-Bermúdez IC, Schmidt W. The regulation and plasticity of root hair patterning and morphogenesis[J]. Development, 2016, 143(11):1848-1858.
    [63]
    Jang G, Yi K, Pires ND, Menand B, Dolan L. RSL genes are sufficient for rhizoid system development in early diverging land plants[J]. Development, 2011, 138(11):2273-2281.
    [64]
    Rymen B, Kawamura A, Schãfer S, Breuer C, Iwase A, Shibata M, et al. ABA suppresses root hair growth via the OBP4 transcriptional regulator[J]. Plant Physiol, 2017, 173(3):1750-1762.
    [65]
    Wang T, Li C, Wu Z, Jia Y, Wang H, Sun S, et al. Abscisic acid regulates auxin homeostasis in rice root tips to promote root hair elongation[J]. Front Plant Sci, 2017, 8:1121.
    [66]
    Wang L, Dong J, Gao Z, Liu D. The Arabidopsis gene HYPERSENSITIVE TO PHOSPHATE STARVATION 3 encodes[WTXFX] ETHYLENE OVERPRODUCTION 1[WTXFZ] [J]. Plant Cell Physiol, 2012, 53(6):1093-1105.
    [67]
    Li W, Ma M, Feng Y, Li H, Wang Y, Ma Y, et al. EIN2-directed translational regulation of ethylene signaling in Arabidopsis[J]. Cell, 2015, 163(3):670-683.
    [68]
    Shu K, Meng YJ, Shuai HW, Liu WG, Du JB, Liu J, et al. Dormancy and germination:how does the crop seed decide?[J]. Plant Biol, 2015, 17(6):1104-1112.
    [69]
    Shu K, Zhou W, Chen F, Luo X, Yang W. Abscisic acid and gibberellins antagonistically mediate plant development and abiotic stress responses[J]. Front Plant Sci, 2018, 9:416.
    [70]
    Shu K, Zhou W, Yang W. APETALA 2-domain-containing transcription factors:focusing on abscisic acid and gibberellins antagonism[J]. New Phytol, 2018, 217(3):977-983.
    [71]
    Lim CW, Baek W, Jung J, Kim JH, Lee SC. Function of aba in stomatal defense against biotic and drought stresses[J]. Int J Mol Sci, 2015, 16(7):15251-15270.
    [72]
    Ramirez L, Negri P, Sturla L, Guida L, Vigliarolo T, Maggi M, et al. Abscisic acid enhances cold tolerance in honeybee larvae[J]. Proc Biol Sci, 2017, 284(1852).
    [73]
    Agurla S, Gahir S, Munemasa S, Murata Y, Raghavendra AS. Mechanism of stomatal closure in plants exposed to drought and cold stress[J]. Adv Exp Med Biol, 2018, 1081:215-232.
    [74]
    Fonouni-Farde C, Diet A, Frugier F. Root development and endosymbioses:DELLAs lead the orchestra[J]. Trends Plant Sci, 2016, 21(11):898-900.
    [75]
    Li G, Zhu C, Gan L, Ng D, Xia K. GA(3) enhances root responsiveness to exogenous IAA by modulating auxin transport and signalling in Arabidopsis[J]. Plant Cell Rep, 2015, 34(3):483-494.
    [76]
    Shu K, Yang W. E3 ubiquitin ligases:ubiquitous actors in plant development and abiotic stress responses[J]. Plant Cell Physiol, 2017, 58(9):1461-1476.
  • Related Articles

    [1]HU Guang-ming, XIA Wen-juan, ZHENG Li, RAO Hang-kong, LEI Ming, WANG Jian, ZHAO Ting-ting, LI Zuo-zhou, ZHONG Cai-hong. Investigation and fruit genetic diversity analysis of wild Actinidia germplasm resources in Tongshan County, Hubei Province[J]. Plant Science Journal, 2021, 39(6): 620-631. DOI: 10.11913/PSJ.2095-0837.2021.60620
    [2]Chen Mei-Yan, Zhao Ting-Ting, Liu Xiao-Li, Han Fei, Zhang Peng, Zhong Cai-Hong. Factor analysis and comprehensive evaluation of fruit quality of ‘Jinyan’ kiwifruit (Actinidia eriantha×Actinidia chinensis)[J]. Plant Science Journal, 2021, 39(1): 85-92. DOI: 10.11913/PSJ.2095-0837.2021.10085
    [3]WANG Rong, HE Zhi-Chong, FANG Xue-Min, CHEN Dan-Li, WANG Qi, MENG Jia-Song, ZHAO Da-Qiu. Analysis of Phenotypic Diversity of Paeonia lactiflora Cultivars in Yangzhou[J]. Plant Science Journal, 2016, 34(6): 901-908. DOI: 10.11913/PSJ.2095-0837.2016.60901
    [4]YANG Xiao-Hui, ZHAO Xue-Li, GAO Xin-Fen. Morphological Variation and ITS Sequence Analysis of the Indigofera szechuensis Complex[J]. Plant Science Journal, 2015, 33(6): 727-733. DOI: 10.11913/PSJ.2095-0837.2015.60727
    [5]CAI Jun-Long, LU Jin-Qing, LI Qiang, GUO Sheng-Nan, DAI Yi. Analysis on Volatile Components of Caryophylli Flos from Different Habitats[J]. Plant Science Journal, 2015, 33(2): 251-258. DOI: 10.11913/PSJ.2095-0837.2015.20251
    [6]CHEN Sui-Qing, SONG Jun, CUI Can. Research and Evaluation on Chemical Fingerprints of Diterpenoids from Rabdosia rubescens[J]. Plant Science Journal, 2012, 30(5): 519-527. DOI: 10.3724/SP.J.1142.2012.50519
    [7]SHU Xiao, YANG Zhi-Ling, YANG Xu, DUAN Hong-Ping, YU Hua-Hui, LIU Ruo-Nan. Variation in Traits of Magnolia officinalis Seedlings from Different Provenances and Their Principal Component Analysis[J]. Plant Science Journal, 2010, 28(5): 623-630.
    [8]LI Ren-Wei, ZHANG Hung-Ta. Analysis on the Components of Seed Plant Flora in Sichuan Region[J]. Plant Science Journal, 2002, 20(5): 381-386.
    [9]Xiong Xiufang, Zhang Yinhua, Gong Fujun, Nan Peng, Yuan Ping, Wang Guoliang. STUDIES ON THE CHEMICAL CONSTITUENTS OF THE VOLATILE OIL FROM CHENOPODIUM AMBROSIOIDES L.GROWN IN HUBEI[J]. Plant Science Journal, 1999, 17(3): 244-248.
    [10]He Jingbiao, Sun Xiangzhong, Wang Huiqin, Zhong Yang, Huang Deshi. ANALYSES ON THE CHARACTERS OF THE GENUS OTTELIA (HYDROCHARITACEAE) IN CHINA[J]. Plant Science Journal, 1992, 10(2): 101-108.
  • Cited by

    Periodical cited type(24)

    1. 胡星,胡纪龙,张敏,刘娇,黄晓霞. 外源NO对盐胁迫下八角金盘叶片生理特性及解剖结构的影响. 西南林业大学学报(自然科学). 2025(01): 68-77 .
    2. 张伟溪,丁密,苏晓华,李爱平,王小江,余金金,李政宏,黄秦军,丁昌俊. 小叶杨×欧洲黑杨杂交F_1代生长及叶片解剖结构杂种优势分析与抗旱性评价. 南京林业大学学报(自然科学版). 2025(01): 46-58 .
    3. 赵莹. 叶形与叶色在园林景观设计中的应用. 分子植物育种. 2025(02): 622-627 .
    4. 邱彦芬,杨湉,吴裕. 基于叶片解剖结构评价不同倍性橡胶树无性系抗旱性. 热带农业科技. 2024(02): 61-67 .
    5. 萨其拉,张霞,朱琳,康萨如拉. 长期不同放牧强度下荒漠草原优势种无芒隐子草叶片解剖结构变化. 植物生态学报. 2024(03): 331-340 .
    6. 胡光明,肖涛,彭家清,李大卫,田华,王华玲,肖丽丽,程均欢,黄海雷,吴伟,钟彩虹. 基于叶片形态及显微特征评价12个猕猴桃栽培品种的抗旱性. 果树学报. 2024(05): 911-928 .
    7. 刘柯珍,何诚. 微观视角下防火树种特征研究动态. 西南林业大学学报(自然科学). 2024(03): 212-220 .
    8. 肖刚,赵峰,李世民,刘帅,路艳. 高速公路中央分隔带绿化植物对干旱胁迫的生理响应和抗旱性评价. 山东交通科技. 2024(03): 81-85 .
    9. 罗玲,刘伟,梁东,马一君,李然,吕秀兰. 不同架形对阳光玫瑰葡萄叶幕生态和高温下应逆生理的影响. 果树学报. 2024(12): 2444-2462 .
    10. 侯立伟,鲁绍伟,李少宁,赵娜,徐晓天. 城市绿化灌木耐旱性评价及灌溉制度研究进展. 世界林业研究. 2023(01): 45-51 .
    11. 孙一鑫,马乐乐,苗丽丽,何佳星,李建明. 基于光辐射时滞效应的温室番茄蒸腾量模型的构建. 西北农林科技大学学报(自然科学版). 2023(02): 83-92 .
    12. 何桥,向海洋,向芳,黄明,陈栋,向素琼,郭启高,梁国鲁,熊伟. 野生李用于巫山脆李砧木的适宜性研究. 西南大学学报(自然科学版). 2023(03): 74-87 .
    13. 马静,贺熙勇,陶亮,吴超,李志强,宫丽丹. 基于叶片解剖结构的澳洲坚果种质资源抗旱性评价. 热带作物学报. 2023(07): 1392-1399 .
    14. 仇杰,高超,罗洪发. 贵州西北喀斯特区古茶树叶片解剖结构及抗旱性评价. 西北植物学报. 2023(07): 1170-1184 .
    15. 董淑龙,马姜明,莫燕华,黎露. 红花檵木种质资源与应用研究综述. 广西林业科学. 2022(02): 290-297 .
    16. 董志君,高健洲,于晓南. 烯效唑对盆栽芍药生理特性及显微结构的影响. 北京林业大学学报. 2022(07): 117-125 .
    17. 王菲,程小毛,肖云龙,黄晓霞. 千家寨野生古茶树叶片解剖结构和化学组分计量特征对海拔梯度的适应. 生态学杂志. 2021(07): 1958-1968 .
    18. 景晨娟,陈雪峰,王端,季文章,武晓红. 三个李子品种叶片结构差异及其抗旱性分析. 北方园艺. 2021(15): 27-34 .
    19. 钟灶发,张利娟,高思思,彭婷. 干旱胁迫下4种柑橘砧木叶片细胞学特征及抗旱性比较. 园艺学报. 2021(08): 1579-1588 .
    20. 周荧,王頔,聂飞. 贵州省两个蓝莓品种组培苗和扦插苗干旱胁迫响应. 南方农业. 2021(20): 171-174+178 .
    21. 郭燕,张树航,李颖,张馨方,王广鹏. 中国板栗238份品种(系)叶片形态、解剖结构及其抗旱性评价. 园艺学报. 2020(06): 1033-1046 .
    22. 董章宏,尹亚梅,徐剑,李显煌,瞿绍宏,辛静,常晓勇,辛培尧. 滇杨雌、雄株茎叶解剖结构差异分析. 云南农业大学学报(自然科学). 2020(03): 502-510 .
    23. 谭莎,赖路伟,黄永芳,叶小萍,谭健彬,许雄坚. 3个山茶品种对干旱胁迫的生理响应. 亚热带植物科学. 2020(05): 335-339 .
    24. 崔杰,洪文君,刘俊,陈伟玉,何书奋,罗金环. 极小种群野生植物海南假韶子结构解剖特征研究. 广东农业科学. 2019(11): 31-36 .

    Other cited types(22)

Catalog

    Article views (2466) PDF downloads (1035) Cited by(46)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return