Advance Search
Xiong Jing, Wang Chen, Xing Wen-Li, Yu Mu-Kui, Cheng Xiang-Rong, Zhang Cui. Morphological and physiological responses of Ardisia crenata seedlings under different light intensities[J]. Plant Science Journal, 2018, 36(5): 736-744. DOI: 10.11913/PSJ.2095-0837.2018.50736
Citation: Xiong Jing, Wang Chen, Xing Wen-Li, Yu Mu-Kui, Cheng Xiang-Rong, Zhang Cui. Morphological and physiological responses of Ardisia crenata seedlings under different light intensities[J]. Plant Science Journal, 2018, 36(5): 736-744. DOI: 10.11913/PSJ.2095-0837.2018.50736

Morphological and physiological responses of Ardisia crenata seedlings under different light intensities

Funds: 

This work was supported by grants from the Key National Research and Development Program(2017YFC0505500, 2017YFC0505502) and Key Cooperation Projects of Zhejiang and Chinese Academy of Forestry (2014SY01).

More Information
  • Received Date: April 04, 2018
  • Available Online: October 31, 2022
  • Published Date: October 27, 2018
  • Changes in the morphology, biomass, and physiology of Ardisia crenata seedlings were studied under different light environments (100%, 52%, 33%, 15%, and 6% relative light intensities). Results showed that the biomass of individual A. crenata seedlings was significantly higher under 52% light treatment than that under other treatments. The proportion of biomass allocated to leaves under 15%-52% light treatment was also higher than that under 100% and 6% light treatment. The root shoot ratio was not affected by light intensity, indicating that the structural plasticity of A. crenata was relatively low. The concentrations of nitrate increased with the decrease in light intensity and increased significantly under 6% light treatment. The change in nitrate reductase activity with light intensity was consistent with the change in nitrate content. Furthermore, the A. crenata seedlings adapted to different light environments by changing the leaf area and specific leaf area and by regulating the photosynthetic pigment. Analysis of chloroplast ultrastructure also showed that chloroplast number and cellular structure under 15%-52% light treatment were intact. However, under 100% and 6% light treatment, the number of the chloroplasts decreased significantly, the cellular structure was damaged, and plasmolysis occurred. Therefore, the most suitable growth conditions for A. crenata seedlings were under 15%-52% relative light intensities, though the best growth was achieved under 33%-52% relative light treatment.
  • [1]
    徐飞, 郭卫华, 徐伟红, 王仁卿. 不同光环境对麻栎和刺槐幼苗生长和光合特征的影响[J]. 生态学报, 2010, 30(12):3098-3107.

    Xu F, Guo WH, Xu WH, Wang RQ. Effects of light intensity on growth and photosynthesis of seedlings of Quercus acutissima and Robinia pseudoacacia[J]. Acta Ecologica Sinica, 2010, 30(12):3098-3107.
    [2]
    Leakey ADB,Press MC,Scholes JD. Patterns of dyna-mic irradiance affect the photosynthetic capacity and growth of dipterocarp tree seedlings[J]. Oecologia, 2003, 135(2):184-193.
    [3]
    邓波, 曹燕妮, 方升佐, 尚旭岚. 光照强度对青钱柳叶形态结构、光合特性和生长的影响[J]. 东北林业大学学报, 2015, 43(8):1-6.

    Deng B, Cao YN, Fang SZ, Shang LX. Influence of light intensity on leaf morphological structure, photosynthesis characteristics and growth of Cyclocarya paliurus[J]. Journal of Northeast Forestry University, 2015, 43(8):1-6.
    [4]
    岳建平, 席广永, 黎昵. 基于多小波的分布式光纤温度传感监测数据处理[J]. 河海大学学报:自然科学版, 2008, 36(5):675-678.

    Yue JP, Xi GY, Li N. Distributed optical fiber temperature sensing monitoring data processing based on multiwavelet[J]. Journal of Hohai University:Natural Science Edition, 2008, 36(5):675-678.
    [5]
    聂谷华. 观赏、生态及经济三用植物——朱砂根[J]. 河北林业科技, 2010(1):104-105.

    Nie GH. Ornamental, ecological and economic three-use plant-Ardisia crenata[J]. Hebei forestry Science, 2010(1):104-105.
    [6]
    刘敬聪. 耐荫与观果皆优的乡土树种:朱砂根[J]. 广东园林, 2005, 29(3):36-37.

    Liu JC. Local tree species with excellent shade and fruit:Ardisia crenata[J]. Guangdong Landscape Architecture, 2005, 29(3):36-37.
    [7]
    江香梅, 叶金山, 幸伟荣. 紫金牛属植物的药用、观赏价值及其研究进展[J]. 江西林业科技, 2003, 5(12):30-33.

    Jiang XM, Ye JS, Xing WR. The medicinal and ornamental value and research progress of Ardisia[J]. Jiangxi Forestry Science and Technology, 2003, 5(12):30-33.
    [8]
    陶萌春, 廖柏林, 罗盛金. 朱砂根播种育苗技术[J]. 种子, 2014, 33(10):126-128.

    Tao MC, Liao BL, Luo SJ. Technical regulations of sowing seedling-rasing of Ardisia crenata[J]. Seed, 2014, 33(10):126-128.
    [9]
    张伟, 李锟, 李东, 祁献芳, 康文艺. 朱砂根化学成分和药理作用研究进展[J]. 中国实验方剂学杂志, 2011, 17(11):279.

    Zhang W, Li K, Li D, Qi XF, Kang WY. Development of chemical and pharmacological of Ardisia crenata[J]. Chinese Jouranl of Experimental Traditional Medical Formulae, 2011, 17(11):279.
    [10]
    李勇军, 夏彬, 龙庆德, 张桂青, 查俊, 等. 朱砂根主要活性成分的含量测定研究[J]. 时珍国医国药, 2011, 22(8):1929-1931.

    Li YJ, Xia B, Long QD, Zhang GQ, Zha J, et al. The study of the content of main active components of Ardisia crenata[J]. Li Shi Zhen Medicne and Meteria Medica Research, 2011, 22(8):1929-1931.
    [11]
    蔡长福. 朱砂根外植体消毒及启动培养的研究[J]. 安徽农业科学, 2015, 43(26):30-32.

    Cai CF. Study on the sterilization and initiation culture of explant in Ardisia crenata[J]. Journal of Anhui Agriculture Science, 2015, 43(26):30-32.
    [12]
    胡菊, 毛美琴, 杨君, 但方, 马明东. 4种发根农杆菌对朱砂根组培无菌叶片毛状根诱导的影响[J]. 西北植物学报, 2016, 36(2):411-418.

    Hu J, Mao MQ, Yang J, Dan F, Ma MD. Four kinds of Agrobacterium rhizogenes on sterile leaves induction of Ardisia crenata Sims[J]. Acta Botanica Boreali-Occidentalia Sinica, 2016, 36(2):411-418.
    [13]
    邓素芳, 黄烯, 赖钟雄. 朱砂根的药用价值与观赏价值[J]. 亚热带农业研究, 2006, 2(3):176-178.

    Deng SF, Hu X, Lai ZX. Progress in them edicinal and ornamengtal values of Ardisia crenata Sims[J]. Subtropical Agriculture Research, 2006, 2(3):176-178.
    [14]
    Alpert P, Bone E, Holzapfel C. Invasiveness, invisibility and the role of environmental stress in the spread of non-native plants[J]. Perspect Plant Ecol, 2000, 3:52-66.
    [15]
    颉洪涛, 虞木奎, 成向荣. 光照强度变化对5种耐阴植物氮磷养分含量、分配以及限制状况的影响[J]. 植物生态学报, 2017, 41(5):559-569.

    Xie HT, Yu MK, Cheng XR. Effects of light intensity variation on nitrogen and phosphorus contents, allocation and limitation in five shade-enduring plants[J]. Chinese Journal of Plant Ecology, 2017, 41(5):559-569.
    [16]
    成向荣, 周俊宏, 陈永辉, 武克壮, 虞木奎. 山栀子幼苗表型可塑性对不同光环境的响应[J]. 江西农业大学学报, 2016, 38(1):180-186.

    Cheng XR, Zhou JH, Chen YH, Wu KZ, Yu MK. Effects of light intensity on phenotypic plasticity of Gardenia jasminoides seedlings[J]. Acta Agriculturae Universitatis Jiangxiensis, 2016, 38(1):180-186.
    [17]
    张治安, 张美善, 蔚荣海. 植物生理学实验指导[M]. 北京:中国农业科学技术出版社, 2004.

    Zhang ZA, Zhang MS, Wei RH. Guidance on the Experiment of Plant Physiology[M]. Beijing:China Agricultural Science and Technology Press, 2004.
    [18]
    郝再彬, 苍晶, 徐仲. 植物生理实验技术[M]. 哈尔滨:哈尔滨出版社, 2002.

    Hao ZB, Cang J, Xu Z. Plant Physiology Experiment Technology[M]. Harbin:Harbin Publishing House, 2002.
    [19]
    左志锐, 高俊平, 穆鼎, 刘春. 盐胁迫下百合两个品种的叶绿体和线粒体超微结构比较[J]. 园艺学报, 2006, 33(2):429-432.

    Zuo ZR, Gao JP, Mu D, Liu C. A comparative electron microscopic of ultra-structure in different lily cultivars under salt stress[J]. Acta Horticulturae Sinica, 2006, 33(2):429-432.
    [20]
    吴月燕, 李波, 张燕忠, 崔鹏. 盐胁迫对杜鹃生理生化与叶绿体亚显微结构的影响[J]. 浙江大学学报:农业与生命科学版, 2011, 37(6):642-648.

    Wu YY, Li B, Zhang YZ, Cui P. Effects of salt stress on physiological-biochemical characteristics and chloroplast submicroscopic structure of Rhododendron indicum[J]. Journal of Zhejiang University:Agriculture and Life Science, 2011, 37(6):642-648.
    [21]
    孟婷婷, 倪健, 王国宏. 植物功能性状与环境和生态系统功能[J]. 植物生态学报, 2007, 31(1):150-165.

    Meng TT, Ni J, Wang GH. Plant functional traits, environments and ecosystem functioning[J]. Journal of Plant Ecology, 2007, 31(1):150-165.
    [22]
    周俊宏, 成向荣, 虞木奎, 诸葛建军. 紫楠幼苗生长、叶性状和生物量分配对林窗不同生境的响应[J]. 东北林业大学学报, 2015, 43(12):21-24, 50.

    Zhou JH, Cheng XR, Yu MK, Zhuge JJ. Responses of growth, leaf traits and biomass allocation of Phoebe sheareri seedlings to different habitats in forest gap[J]. Journal of Northeast Forestry University, 2015, 43(12):21-24, 50.
    [23]
    Wang GG, Bauerle WL, Mudder BT. Effects of light acclimation on the photosynthesis, growth, and biomass allocation in American chestnut (Castanea dentata) seedlings[J]. Forest Ecol Manag, 2006, 26:173-180.
    [24]
    Saldana-Acosta A, Meave JA, Sánchez-Velásquez LR. Seedling biomass allocation and vital rates of cloud forest tree species:responses to light in shade house conditions[J]. Forest Ecol Manag, 2009, 258:1650-1659.
    [25]
    Poorter H, Nagel O. The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water:a quantitative review[J]. Aust J Plant Physiol, 2000, 27:595-607.
    [26]
    Nishimura E, Suzaki E, Irie M. Architecture and growth of an annual plant chenopodium album in different light climates[J]. Ecol Res, 2010, 25(2):383-393.
    [27]
    周忆堂, 马红群, 梁丽娇, 洪鸿, 胡丽涛, 等. 不同光照条件下长春花的光合作用和叶绿素荧光动力学特征[J]. 中国农业科学, 2008, 41(11):3589-3595.

    Zhou YT, Ma HQ, Liang LJ, Hong H, Hu LT, et al. Photosynthetic characteristics and chlorophyll fluorescence in leaves of Catharanthus roseus grown under different light intensities[J]. Scientia Agricultura Sinica, 2008, 41(11):3589-3595.
    [28]
    罗俊, 张木清, 吕建林, 林彦铨. 水分胁迫对不同甘蔗品种叶绿素a荧光动力学的影响[J]. 福建农业大学学报, 2002, 29(1):18-22.

    Luo J, Zhang MQ, Lü JL, Lin YS. Effects of water stress on the chlorophyll a fluorescence induction kinetics of sugarcane genotypes[J]. Journal of Fujian Agricultural University, 2002, 29(1):18-22.
    [29]
    王亚芸, 王立英, 任建武, 姚洪军, 沙海峰. 金叶榆不同叶位叶片呈色生理机制研究[J]. 中国农学通报, 2014, 30(16):22-29.

    Wang YY, Wang LY, Ren JW, Yao HJ, Sha HF. The study of color-emerging mechanism of leaves at different leaf position of Ulmus pumila ‘Jinye’[J]. Chinese Agricultural Science Bulletin, 2014, 30(16):22-29.
    [30]
    Iriti M, Faoro F. Chemical diversity and defence metabolism:how plants cope with pathogens and ozone pollution[J]. Int Journal Mol Sci, 2009, 10(8):3371-3399.
    [31]
    陈青君, 张福墁, 王永健, 藏田宪次. 黄瓜对低温弱光反应的生理特征研究[J]. 中国农业科学, 2003, 36(1):77-81.

    Chen QJ, Zhang FM, Wang YJ, Zangtian XC. Studies of physiologic characteristics of reaction of cucumber to low temperature and poor light[J]. Scientia Agricultura Sinica, 2003, 36(1):77-81.
    [32]
    张莉, 续九如. 水分胁迫下剌槐不同无性系生理生化反应的研究[J]. 林业科学, 2003,39(4):162-167.

    Zhang L, Xu JR. Studies on physiological and biochemical responeses of Robinia pseudoacacia clones under water stress[J]. Scientia Silvae Sinicae, 2003,39(4):162-167.
    [33]
    杨柳, 何正军, 赵文吉, 贾国夫, 来利明, 等. 狭叶红景天幼苗对水分及遮阴的生长及生理生化响应[J]. 生态学报, 2017, 37(14):4706-4714.

    Yang L, He ZJ, Zhao WJ, Jia GF, Lai LM, et al. Growth, physiological, and biochemical responses of Rhodiola kirilowii seedlings to water and shading[J]. Acta Ecologica Sinica, 2017, 37(14):4706-4714.
    [34]
    Amini F, Ehsanpour AA. Soluble proteins, proline, carbohydrates and Na+/K+ changes in two tomato (Lycopersicon esculentum Mill.) cultivars under in vitro salt stress[J]. American Journal of Biochemistry and Biotechnology, 2005, 1(4):212-216.
    [35]
    冯坤, 郑青松, 俞佳虹, 程远, 叶青静, 等. 超氧化物歧化酶的遗传特征及其在植物抗逆性中的研究进展[J]. 分子植物育种, 2017, 15(11):4498-4505.

    Feng K, Zheng QS, Yu JH, Cheng Y, Ye QJ, et al. The characteristics of superoxide dismutase (SOD) in evolutions and its research in plant resistance[J]. Molecular Plant Breeding, 2017, 15(11):4498-4505.
    [36]
    王志昊, 叶冬梅, 何炎红, 张智慧, 张国盛, 段国珍. 5种沙生植物丙二醛、脯氨酸和2种氧化物酶比较[J]. 分子植物育种, 2018, 16(11):3727-3731.

    Wang ZH, Ye DM, He YH, Zhang ZH, Zhang GS, Duan GZ. Comparison of the content of MDA, proline and activity of two kinds of enzyme in 5 common desert plants[J]. Molecular Plant Breeding, 2018, 16(11):3727-3731.
    [37]
    贾晓龙, 陈鸽, 南桂仙. 三种非生物胁迫对蒙古柳幼苗电导率和丙二醛含量的影响[J]. 黑龙江科学, 2017, 8(24):13-14, 19.

    Jia XL, Chen G, Nan GX. Influences of three stress treatments on electric conductivity and malondialdehyde content on Salix linearistipularis seedlings[J]. Heilongjiang Science, 2017, 8(24):13-14, 19.
    [38]
    林多, 黄丹枫, 杨延杰, 陈宁. 钾素水平对网纹甜瓜叶片光合特性及叶绿体亚显微结构的影响[J]. 应用生态学报, 2007, 18(5):1068-1072.

    Lin D, Huang DF, Yang YJ, Chen N. Effects of potassium level on photosynthetic characteristics and chloroplast submicroscopic structure of Muskmelon leaves[J]. Chinese Journal of Applied Ecology, 2007, 18(5):1068-1072.
    [39]
    陶巧静, 吴月燕, 付涛, 项锡娜, 李波. 弱光胁迫对西洋杜鹃生理特性和叶片超微结构的影响[J]. 林业科学, 2015, 51(3):84-92.

    Tao QJ, Wu YY, Fu T, Xiang XN, Li B. Effect of low light stress on physiological characteristics and ultrastructure of Rhododendron hybridum leaves[J]. Scientia Silvae Sinicae, 2015, 51(3):84-92.
  • Related Articles

    [1]HU Guang-ming, XIA Wen-juan, ZHENG Li, RAO Hang-kong, LEI Ming, WANG Jian, ZHAO Ting-ting, LI Zuo-zhou, ZHONG Cai-hong. Investigation and fruit genetic diversity analysis of wild Actinidia germplasm resources in Tongshan County, Hubei Province[J]. Plant Science Journal, 2021, 39(6): 620-631. DOI: 10.11913/PSJ.2095-0837.2021.60620
    [2]Chen Mei-Yan, Zhao Ting-Ting, Liu Xiao-Li, Han Fei, Zhang Peng, Zhong Cai-Hong. Factor analysis and comprehensive evaluation of fruit quality of ‘Jinyan’ kiwifruit (Actinidia eriantha×Actinidia chinensis)[J]. Plant Science Journal, 2021, 39(1): 85-92. DOI: 10.11913/PSJ.2095-0837.2021.10085
    [3]WANG Rong, HE Zhi-Chong, FANG Xue-Min, CHEN Dan-Li, WANG Qi, MENG Jia-Song, ZHAO Da-Qiu. Analysis of Phenotypic Diversity of Paeonia lactiflora Cultivars in Yangzhou[J]. Plant Science Journal, 2016, 34(6): 901-908. DOI: 10.11913/PSJ.2095-0837.2016.60901
    [4]YANG Xiao-Hui, ZHAO Xue-Li, GAO Xin-Fen. Morphological Variation and ITS Sequence Analysis of the Indigofera szechuensis Complex[J]. Plant Science Journal, 2015, 33(6): 727-733. DOI: 10.11913/PSJ.2095-0837.2015.60727
    [5]CAI Jun-Long, LU Jin-Qing, LI Qiang, GUO Sheng-Nan, DAI Yi. Analysis on Volatile Components of Caryophylli Flos from Different Habitats[J]. Plant Science Journal, 2015, 33(2): 251-258. DOI: 10.11913/PSJ.2095-0837.2015.20251
    [6]CHEN Sui-Qing, SONG Jun, CUI Can. Research and Evaluation on Chemical Fingerprints of Diterpenoids from Rabdosia rubescens[J]. Plant Science Journal, 2012, 30(5): 519-527. DOI: 10.3724/SP.J.1142.2012.50519
    [7]SHU Xiao, YANG Zhi-Ling, YANG Xu, DUAN Hong-Ping, YU Hua-Hui, LIU Ruo-Nan. Variation in Traits of Magnolia officinalis Seedlings from Different Provenances and Their Principal Component Analysis[J]. Plant Science Journal, 2010, 28(5): 623-630.
    [8]LI Ren-Wei, ZHANG Hung-Ta. Analysis on the Components of Seed Plant Flora in Sichuan Region[J]. Plant Science Journal, 2002, 20(5): 381-386.
    [9]Xiong Xiufang, Zhang Yinhua, Gong Fujun, Nan Peng, Yuan Ping, Wang Guoliang. STUDIES ON THE CHEMICAL CONSTITUENTS OF THE VOLATILE OIL FROM CHENOPODIUM AMBROSIOIDES L.GROWN IN HUBEI[J]. Plant Science Journal, 1999, 17(3): 244-248.
    [10]He Jingbiao, Sun Xiangzhong, Wang Huiqin, Zhong Yang, Huang Deshi. ANALYSES ON THE CHARACTERS OF THE GENUS OTTELIA (HYDROCHARITACEAE) IN CHINA[J]. Plant Science Journal, 1992, 10(2): 101-108.
  • Cited by

    Periodical cited type(24)

    1. 胡星,胡纪龙,张敏,刘娇,黄晓霞. 外源NO对盐胁迫下八角金盘叶片生理特性及解剖结构的影响. 西南林业大学学报(自然科学). 2025(01): 68-77 .
    2. 张伟溪,丁密,苏晓华,李爱平,王小江,余金金,李政宏,黄秦军,丁昌俊. 小叶杨×欧洲黑杨杂交F_1代生长及叶片解剖结构杂种优势分析与抗旱性评价. 南京林业大学学报(自然科学版). 2025(01): 46-58 .
    3. 赵莹. 叶形与叶色在园林景观设计中的应用. 分子植物育种. 2025(02): 622-627 .
    4. 邱彦芬,杨湉,吴裕. 基于叶片解剖结构评价不同倍性橡胶树无性系抗旱性. 热带农业科技. 2024(02): 61-67 .
    5. 萨其拉,张霞,朱琳,康萨如拉. 长期不同放牧强度下荒漠草原优势种无芒隐子草叶片解剖结构变化. 植物生态学报. 2024(03): 331-340 .
    6. 胡光明,肖涛,彭家清,李大卫,田华,王华玲,肖丽丽,程均欢,黄海雷,吴伟,钟彩虹. 基于叶片形态及显微特征评价12个猕猴桃栽培品种的抗旱性. 果树学报. 2024(05): 911-928 .
    7. 刘柯珍,何诚. 微观视角下防火树种特征研究动态. 西南林业大学学报(自然科学). 2024(03): 212-220 .
    8. 肖刚,赵峰,李世民,刘帅,路艳. 高速公路中央分隔带绿化植物对干旱胁迫的生理响应和抗旱性评价. 山东交通科技. 2024(03): 81-85 .
    9. 罗玲,刘伟,梁东,马一君,李然,吕秀兰. 不同架形对阳光玫瑰葡萄叶幕生态和高温下应逆生理的影响. 果树学报. 2024(12): 2444-2462 .
    10. 侯立伟,鲁绍伟,李少宁,赵娜,徐晓天. 城市绿化灌木耐旱性评价及灌溉制度研究进展. 世界林业研究. 2023(01): 45-51 .
    11. 孙一鑫,马乐乐,苗丽丽,何佳星,李建明. 基于光辐射时滞效应的温室番茄蒸腾量模型的构建. 西北农林科技大学学报(自然科学版). 2023(02): 83-92 .
    12. 何桥,向海洋,向芳,黄明,陈栋,向素琼,郭启高,梁国鲁,熊伟. 野生李用于巫山脆李砧木的适宜性研究. 西南大学学报(自然科学版). 2023(03): 74-87 .
    13. 马静,贺熙勇,陶亮,吴超,李志强,宫丽丹. 基于叶片解剖结构的澳洲坚果种质资源抗旱性评价. 热带作物学报. 2023(07): 1392-1399 .
    14. 仇杰,高超,罗洪发. 贵州西北喀斯特区古茶树叶片解剖结构及抗旱性评价. 西北植物学报. 2023(07): 1170-1184 .
    15. 董淑龙,马姜明,莫燕华,黎露. 红花檵木种质资源与应用研究综述. 广西林业科学. 2022(02): 290-297 .
    16. 董志君,高健洲,于晓南. 烯效唑对盆栽芍药生理特性及显微结构的影响. 北京林业大学学报. 2022(07): 117-125 .
    17. 王菲,程小毛,肖云龙,黄晓霞. 千家寨野生古茶树叶片解剖结构和化学组分计量特征对海拔梯度的适应. 生态学杂志. 2021(07): 1958-1968 .
    18. 景晨娟,陈雪峰,王端,季文章,武晓红. 三个李子品种叶片结构差异及其抗旱性分析. 北方园艺. 2021(15): 27-34 .
    19. 钟灶发,张利娟,高思思,彭婷. 干旱胁迫下4种柑橘砧木叶片细胞学特征及抗旱性比较. 园艺学报. 2021(08): 1579-1588 .
    20. 周荧,王頔,聂飞. 贵州省两个蓝莓品种组培苗和扦插苗干旱胁迫响应. 南方农业. 2021(20): 171-174+178 .
    21. 郭燕,张树航,李颖,张馨方,王广鹏. 中国板栗238份品种(系)叶片形态、解剖结构及其抗旱性评价. 园艺学报. 2020(06): 1033-1046 .
    22. 董章宏,尹亚梅,徐剑,李显煌,瞿绍宏,辛静,常晓勇,辛培尧. 滇杨雌、雄株茎叶解剖结构差异分析. 云南农业大学学报(自然科学). 2020(03): 502-510 .
    23. 谭莎,赖路伟,黄永芳,叶小萍,谭健彬,许雄坚. 3个山茶品种对干旱胁迫的生理响应. 亚热带植物科学. 2020(05): 335-339 .
    24. 崔杰,洪文君,刘俊,陈伟玉,何书奋,罗金环. 极小种群野生植物海南假韶子结构解剖特征研究. 广东农业科学. 2019(11): 31-36 .

    Other cited types(22)

Catalog

    Article views (723) PDF downloads (837) Cited by(46)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return