Advance Search
Qu Dan-Yang, Gu Wan-Rong, Li Li-Jie, Li Jing, Li Cai-Feng, Wei Shi. Regulation of chitosan on the ascorbate-glutathione cycle in Zea mays seedling leaves under cadmium stress[J]. Plant Science Journal, 2018, 36(2): 291-299. DOI: 10.11913/PSJ.2095-0837.2018.20291
Citation: Qu Dan-Yang, Gu Wan-Rong, Li Li-Jie, Li Jing, Li Cai-Feng, Wei Shi. Regulation of chitosan on the ascorbate-glutathione cycle in Zea mays seedling leaves under cadmium stress[J]. Plant Science Journal, 2018, 36(2): 291-299. DOI: 10.11913/PSJ.2095-0837.2018.20291

Regulation of chitosan on the ascorbate-glutathione cycle in Zea mays seedling leaves under cadmium stress

Funds: 

This work was supported by grants from the National Key Research and Development Program of China (2017YFD0300506) and ‘Academic Backbones’ Project of Northeast Agricultural University.

More Information
  • Received Date: August 31, 2017
  • Available Online: October 31, 2022
  • Published Date: April 27, 2018
  • Zea mays L. seedlings of the variety ‘Zhengdan 958’ were used as experimental material to analyze the effects of the external application of chitosan on the activities of antioxidant enzymes and concentrations of nonenzymatic antioxidant substances in the ascorbate-glutathione (AsA-GSH) cycle, as well as on Z.mays seedling biomass, leaf cadmium content, superoxide radical (O2·-) production rate, and hydrogen peroxide (H2O2) content under cadmium stress. With the prolongation of cadmium stress, oxidative stress on the maize seedlings increased, whereas the activities of antioxidant enzymes (APX, GR, DHAR, MDHAR) and concentrations of antioxidants (AsA, GSH) in the leaves decreased. The excessive accumulation of cadmium eventually inhibited the growth of the Z.mays seedlings. Under cadmium stress, the application of chitosan reduced the production ratesof O2·- and H2O2 in the Z. mays seedling leaves and increased the activities of APX, GR, DHAR, and MDHAR and concentrations of AsA and GSH, reaching a maximum at 72 h. Chitosan promoted the regeneration of AsA and GSH and maintained the redox status of cells, which promoted the growth of aerial parts of the Z.mays seedlings. These results indicated that chitosan maintained a high AsA-GSH cycle efficiency, improved the antioxidant capacity of Z. mays seedlings, and effectively alleviated the inhibition of seedling growth under cadmium stress.
  • [1]
    纪小凤, 郑娜, 王洋, 汤琳. 中国城市土壤重金属污染研究现状及展望[J]. 土壤与作物, 2016, 5(1):42-47.

    Ji XF, Zheng N, Wang Y, Tang L. Heavy metal contamination of urban soils in China:recent advances and prospects[J]. Soils and Crops, 2016, 5(1):42-47.
    [2]
    环境保护部. 环境保护部和国土资源部发布全国土壤污染状况调查公报[R/OL].(2014-04-17)[2018-03-14]. http://www.zhb.gov.cn/gkml/hbb/qt/201404/t20140417_270670.htm.
    [3]
    李斌, 赵春江. 我国当前农产品产地土壤重金属污染形势及检测技术分析[J]. 农业资源与环境学报, 2013, 30(5):1-7.

    Li B, Zhao CJ. Current situation of heavy metals pollution in soil at farmland and detection technologies analysis in China[J]. Journal of Agriculture Resources and Environment, 2013, 30(5):1-7.
    [4]
    惠俊爱, 党志, 叶庆生. 镉胁迫对玉米光合特性的影响[J].农业环境科学学报, 2010, 29(2):205-210.

    Hui JA, Dang Z, Ye QS. Influence of cadmium stress on photosynthetic characteristics of maize[J]. Journal of Agro-Environment Science, 2010, 29(2):205-210.
    [5]
    王云, 蔡汉, 陆任云, 王振斌, 董英. 壳聚糖对镉胁迫条件下小麦生长及生理的影响[J].生态学杂志, 2007, 26(10):1671-1673.

    Wang Y, Cai H, Lu RY, Wang ZB, Dong Y. Effects of chitosan on Triticum aestivum growth and physiology under cadmium stress[J]. Chinese Journal of Ecology, 2007, 26(10):1671-1673.
    [6]
    黄辉, 李升, 郭娇丽. 镉胁迫对玉米幼苗抗氧化系统及光合作用的影响[J].农业环境科学学报, 2010, 29(2):211-215.

    Huang H, Li S, Guo JL. The influence of cadmium (Cd2+) to the antioxidant system and photosynthesis of seedling of Zea mays L.[J]. Journal of Agro-Environment Science, 2010, 29(2):211-215.
    [7]
    史静, 潘根兴, 夏运生, 张仕颖, 张乃明. 镉胁迫对两品种水稻生长及抗氧化酶系统的影响[J].生态环境学报, 2013, 22(5):832-837.

    Shi J, Pan GS, Xia YS, Zhang SY, Zhang NM. Effects of Cd on different rice growth and antioxidant enzyme system[J]. Ecology and Environmental Sciences, 2013, 22(5):832-837.
    [8]
    Anjum NA, Umar S, Iqbal M, Khan NA. Cadmium causes oxidative stress in mung bean by affecting the antioxidant enzyme system and asorbate-glutathione cycle metabolism[J]. Russ J Plant Physl, 2011, 58(1):92-99.
    [9]
    宋瑜, 金樑, 曹宗英, 王晓娟. 植物对重金属镉的响应及其耐受机理[J]. 草业学报, 2008, 17(5):84-91.

    Song Y, Jin L, Cao ZY, Wang XJ. Response and resis-tance mechanisms of plants to cadmium[J]. Acta Prata-culturae Sinica, 2008, 17(5):84-91.
    [10]
    陈坤明, 宫海军, 王锁民. 植物谷胱甘肽代谢与环境胁迫[J]. 西北植物学报, 2004, 24(6):1119-1130.

    Chen KM, Gong HJ, Wang SM. Glutathione metabolism and environment stresses in plants[J]. Acta Botantic Boreal-Occidentalia Sinica, 2004, 24(6):1119-1130.
    [11]
    蒋小姝, 莫海涛, 苏海佳, 张小勇. 甲壳素及壳聚糖在农业领域方面的应用[J]. 中国农学通报, 2013, 29(6):170-174.

    Jiang XS, Mo HT, Su HJ, Zhang XY. The application of chitin and chitosan in agriculture[J]. Chinese Agricultural Science Bulletin, 2013, 29(6):170-174.
    [12]
    Liu TT, Liu ZX, Song CJ, Hu Y, Han Z, et al. Chitin-induced dimerization activates a plant immune rece-ptor[J]. Science, 2012, 336(6085):1160-1164.
    [13]
    姜山, 朱启忠, 张真豪. 壳聚糖对小麦种子萌发及干旱胁迫下幼苗保护酶活性的影响[J].干旱地区农业研究, 2011, 29(1):206-209.

    Jiang S, Zhu QZ, Zhang ZH. Effects of chitosan on wheat germination and activities of protective enzyme in seedlings under drought stress[J]. Agricultural Research in the Acid Areas, 2011, 29(1):206-209.
    [14]
    王聪, 董永义, 贾俊英, 包金花, 马玉露, 郑毅. NaCl胁迫下外源壳聚糖对菜用大豆叶绿体抗氧化系统的影响[J]. 植物营养与肥料学报, 2016, 22(5):1356-1365.

    Wang C, Dong YY, Jia JY, Bao JH, Ma YL, Zheng Y. Effects of exogenous chitosan on antioxidant system in chloroplast of vegetable soybean under NaCl stress[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(5):1356-1365.
    [15]
    马彦霞, 郁继华, 张国斌, 曹刚. 壳聚糖对水分胁迫下辣椒幼苗氧化损伤的保护作用[J]. 中国农业科学, 2012, 45(10):1964-1971.

    Ma YX, Yu JH, Zhang GB, Cao G. Protective effects of exogenous chitosan on oxidative damage in pepper seedling leaves under water stress[J]. Scientia Agricultura Sinica, 2012, 45(10):1964-1971.
    [16]
    王爱国, 罗广华. 植物的超氧物自由基与羟胺反应的定量关系[J]. 植物生理学通讯, 1990(6):55-57.

    Wang AG, Luo GH. Quantitative relation between the reaction of hydroxylamine and superoxide anion radicals in plants[J]. Plant Physiology Communications, 1990(6):55-57.
    [17]
    Velikova V, Yordanov I, Edreva A. Oxidative stress and some antioxidant systems in acid rain-treated bean plants-protective role of exogenous polyamines[J]. Plant Sci, 2000, 151(1):59-66.
    [18]
    Wang SY, Jiao HJ, Faust M. Changes in ascorbate, glutathione, and related enzyme activities during thidiazuron-induced bud break of apple[J]. Plant Physiol, 1991, 82(2):231-236.
    [19]
    Anderson ME. Determination of glutathione and glutathione disulfide in biological samples[J]. Method Enzymol, 1984, 113(4):548-555.
    [20]
    Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts[J]. Plant Cell Physiol, 1981, 22(5):867-880.
    [21]
    Foster JG, Hess JL. Responses of superoxide dismutase and glutathione reductase activities in cotton leaf tissue exposed to an atmosphere enriched in oxygen[J]. Plant Physiol, 1980, 66(33):482-487.
    [22]
    孙宁骁, 宋桂龙. 紫花苜蓿对镉胁迫的生理响应及积累特征[J]. 草业学报, 2015, 32(4):581-585.

    Sun NX, Song GL. Physiological response of Medicago sativa to cadmium stress and accumulation property[J]. Pratacultural Science, 2015, 32(4):581-585.
    [23]
    Ahmed S, Nawata E, Hosokawa M, Domae Y, Sakuratani T. Alterations in photosynthesis and some antioxidant enzymatic activities of mung bean subjected to waterlogging[J]. Plant Sci, 2002, 163(1):117-123.
    [24]
    Wang DF, Liu YG, Tan XF, Liu H, Zeng G, et al. Effect of exogenous nitric oxide on antioxidative system and S-nitrosylation in leaves of Boehmeria nivea (L.) Gaud under cadmium stress[J]. Environ Sci Pollut R, 2015, 22:3489-3497.
    [25]
    Bashiri G, Prsad SM. Indole acetic acid modulates changes in growth, chlorophyll a fluorescence and antioxidant potential of Trigonella foenumgraecum L. grown under cadmium stress[J]. Acta Physiologiae Plantarum, 2015, 37(3), 1-14.
    [26]
    邓雨艳, 明建, 张昭其, 曾凯芳. 壳聚糖诱导脐橙果实抗病性、水杨酸及活性氧代谢变化[J]. 中国农业科学, 2010, 43(4):812-820.

    Deng YY, Ming J, Zhang ZQ, Zeng KF. Effect of chitosan on salicylic acid active oxygen metabolism of navel orange fruit[J]. Scientia Agricultura Sinica, 2010, 43(4):812-820.
    [27]
    Zhang J, Kirkham MB. Enzymatic response of the ascorbate-glutathione cycle to drought in sorghum and sunflo-wer plants[J]. Plant Sci, 1996, 113(2):139-147.
    [28]
    Jin YH, Tao DL, Hao ZQ, Ye J, Du YJ, et al. Environmental stresses and redox status of ascorbate[J]. Acta Botanica Sinica, 2003, 45(7):795-801.
    [29]
    王聪, 朱月林, 杨立飞, 陈磊. NaCl胁迫对菜用大豆种子抗坏血酸-谷胱甘肽循环的影响[J].植物营养与肥料学报, 2010, 16(5):1209-1216.

    Wang C, Zhu YL, Yang LF, Chen L. Effects of NaCl stress on ascorbate-glutathione cycle in vegetable soybean seeds[J]. Journal of Plant Nutrition and Fertilizer, 2010, 16(5):1209-1216.
    [30]
    颜志明, 孙锦, 郭世荣, 魏跃, 胡德龙, 王全智. 外源脯氨酸对盐胁迫下甜瓜幼苗根系抗坏血酸-谷胱甘肽循环的影响[J].植物科学学报, 2014, 32(5):502-508.

    Yan ZM, Sun J, Guo SR, Wei Y, Hu DZ, Wang ZQ. Effects of exogenous proline on the ascorbate-glutathione cycle in roots of Cucumis melo seedlings under salt stress[J]. Plant science journal, 2014, 32(5):502-508.
    [31]
    Seth CS, Remans T, Keunen E, Jozefczak M, Gielen H, et al. Phytoextraction of toxic metals:a central role for glutathione[J]. Plant Cell and Environment, 2012, 35(2):334-346.
    [32]
    刘涛, 徐刚, 高文瑞, 郭世荣, 李德翠, 孙艳军. ALA对低温胁迫下辣椒植株叶片中AsA-GSH循环的影响[J]. 江苏农业学报, 2011, 27(4):830-835.

    Lui T, Xu G, Gao WR, Guo SR, Li DC, Sun YJ. Effect of 5-aminolevulinic acid on the ascorbate-glutathione system of pepper leaves under low temperature stress[J]. Jiangsu Journal of Agricultural Sciences, 2011, 27(4):830-835.
    [33]
    Song XS, Hu WH, Mao WH, Ogweno JO, Zhou YH, Yu JQ. Response of ascorbate peroxidase isoenzymes and ascorbate regeneration system to abiotic stresses in Cucumis sativus L.[J]. Plant Physiol Bioch, 2005, 43(12):1082-1088.
    [34]
    Pukacka S, Ratajczak E. Antioxidative response of ascorbate glutathione pathway enzymes and metabolites to desi-ccation of recalcitrant Acer saccharinum seeds[J]. J Plant Physiol, 2006, 163(12):1259-1266.
    [35]
    徐照丽, 吴启堂, 依艳丽. 重金属植物螯合肽(PC)的研究进展[J]. 农业环境保护, 2001, 20(6):468-470.

    Xu ZL, Wu QT, Yi YL. Advanced progress of phytochelatins in plant[J]. Agro-environmental Protection, 2001, 20(6):468-470.
    [36]
    王学华, 戴力. 作物根系镉滞留作用及其生理生化机制[J]. 中国农业科学, 2016, 49(22):4323-4341.

    Wang XH, Dai L. Immobilization effect and its physiology and biochemical mechanism of the cadmium in crop roots[J]. Scientia Agricultura Sinica, 2016, 49(22):4323-4341.
    [37]
    Vögeli-lange R, Wagner GJ. Subcellular localization of cadmium and cadmium-binding peptides in tobacco leaves implication of a transport function for cadmium-binding peptides[J]. Plant Physiol, 1990, 92:1086-1093.
    [38]
    Saidi I, Chtourou Y, Djebali W. Selenium alleviates cadmium toxicity by preventing oxidative stress in sunflower (Helianthus annuus) seedlings[J]. J Plant Physiol, 2014, 171(5):85-91.
    [39]
    Bashri G, Prasad SM. Exogenous IAA differentially affects growth, oxidative stress and antioxidants system in Cd stressed Trigonella foenum-graecum L. seedlings:Toxicity alleviation by up-regulation of ascorbate-glutathione cycle[J]. Ecotox Environ Safe, 2016, 132:329-338.
    [40]
    朱华兰. 镉胁迫下不同镁水平对玉米幼苗生长的影响及生理机制的研究[D]. 重庆:西南大学, 2013.
  • Related Articles

    [1]HU Guang-ming, XIA Wen-juan, ZHENG Li, RAO Hang-kong, LEI Ming, WANG Jian, ZHAO Ting-ting, LI Zuo-zhou, ZHONG Cai-hong. Investigation and fruit genetic diversity analysis of wild Actinidia germplasm resources in Tongshan County, Hubei Province[J]. Plant Science Journal, 2021, 39(6): 620-631. DOI: 10.11913/PSJ.2095-0837.2021.60620
    [2]Chen Mei-Yan, Zhao Ting-Ting, Liu Xiao-Li, Han Fei, Zhang Peng, Zhong Cai-Hong. Factor analysis and comprehensive evaluation of fruit quality of ‘Jinyan’ kiwifruit (Actinidia eriantha×Actinidia chinensis)[J]. Plant Science Journal, 2021, 39(1): 85-92. DOI: 10.11913/PSJ.2095-0837.2021.10085
    [3]WANG Rong, HE Zhi-Chong, FANG Xue-Min, CHEN Dan-Li, WANG Qi, MENG Jia-Song, ZHAO Da-Qiu. Analysis of Phenotypic Diversity of Paeonia lactiflora Cultivars in Yangzhou[J]. Plant Science Journal, 2016, 34(6): 901-908. DOI: 10.11913/PSJ.2095-0837.2016.60901
    [4]YANG Xiao-Hui, ZHAO Xue-Li, GAO Xin-Fen. Morphological Variation and ITS Sequence Analysis of the Indigofera szechuensis Complex[J]. Plant Science Journal, 2015, 33(6): 727-733. DOI: 10.11913/PSJ.2095-0837.2015.60727
    [5]CAI Jun-Long, LU Jin-Qing, LI Qiang, GUO Sheng-Nan, DAI Yi. Analysis on Volatile Components of Caryophylli Flos from Different Habitats[J]. Plant Science Journal, 2015, 33(2): 251-258. DOI: 10.11913/PSJ.2095-0837.2015.20251
    [6]CHEN Sui-Qing, SONG Jun, CUI Can. Research and Evaluation on Chemical Fingerprints of Diterpenoids from Rabdosia rubescens[J]. Plant Science Journal, 2012, 30(5): 519-527. DOI: 10.3724/SP.J.1142.2012.50519
    [7]SHU Xiao, YANG Zhi-Ling, YANG Xu, DUAN Hong-Ping, YU Hua-Hui, LIU Ruo-Nan. Variation in Traits of Magnolia officinalis Seedlings from Different Provenances and Their Principal Component Analysis[J]. Plant Science Journal, 2010, 28(5): 623-630.
    [8]LI Ren-Wei, ZHANG Hung-Ta. Analysis on the Components of Seed Plant Flora in Sichuan Region[J]. Plant Science Journal, 2002, 20(5): 381-386.
    [9]Xiong Xiufang, Zhang Yinhua, Gong Fujun, Nan Peng, Yuan Ping, Wang Guoliang. STUDIES ON THE CHEMICAL CONSTITUENTS OF THE VOLATILE OIL FROM CHENOPODIUM AMBROSIOIDES L.GROWN IN HUBEI[J]. Plant Science Journal, 1999, 17(3): 244-248.
    [10]He Jingbiao, Sun Xiangzhong, Wang Huiqin, Zhong Yang, Huang Deshi. ANALYSES ON THE CHARACTERS OF THE GENUS OTTELIA (HYDROCHARITACEAE) IN CHINA[J]. Plant Science Journal, 1992, 10(2): 101-108.
  • Cited by

    Periodical cited type(24)

    1. 胡星,胡纪龙,张敏,刘娇,黄晓霞. 外源NO对盐胁迫下八角金盘叶片生理特性及解剖结构的影响. 西南林业大学学报(自然科学). 2025(01): 68-77 .
    2. 张伟溪,丁密,苏晓华,李爱平,王小江,余金金,李政宏,黄秦军,丁昌俊. 小叶杨×欧洲黑杨杂交F_1代生长及叶片解剖结构杂种优势分析与抗旱性评价. 南京林业大学学报(自然科学版). 2025(01): 46-58 .
    3. 赵莹. 叶形与叶色在园林景观设计中的应用. 分子植物育种. 2025(02): 622-627 .
    4. 邱彦芬,杨湉,吴裕. 基于叶片解剖结构评价不同倍性橡胶树无性系抗旱性. 热带农业科技. 2024(02): 61-67 .
    5. 萨其拉,张霞,朱琳,康萨如拉. 长期不同放牧强度下荒漠草原优势种无芒隐子草叶片解剖结构变化. 植物生态学报. 2024(03): 331-340 .
    6. 胡光明,肖涛,彭家清,李大卫,田华,王华玲,肖丽丽,程均欢,黄海雷,吴伟,钟彩虹. 基于叶片形态及显微特征评价12个猕猴桃栽培品种的抗旱性. 果树学报. 2024(05): 911-928 .
    7. 刘柯珍,何诚. 微观视角下防火树种特征研究动态. 西南林业大学学报(自然科学). 2024(03): 212-220 .
    8. 肖刚,赵峰,李世民,刘帅,路艳. 高速公路中央分隔带绿化植物对干旱胁迫的生理响应和抗旱性评价. 山东交通科技. 2024(03): 81-85 .
    9. 罗玲,刘伟,梁东,马一君,李然,吕秀兰. 不同架形对阳光玫瑰葡萄叶幕生态和高温下应逆生理的影响. 果树学报. 2024(12): 2444-2462 .
    10. 侯立伟,鲁绍伟,李少宁,赵娜,徐晓天. 城市绿化灌木耐旱性评价及灌溉制度研究进展. 世界林业研究. 2023(01): 45-51 .
    11. 孙一鑫,马乐乐,苗丽丽,何佳星,李建明. 基于光辐射时滞效应的温室番茄蒸腾量模型的构建. 西北农林科技大学学报(自然科学版). 2023(02): 83-92 .
    12. 何桥,向海洋,向芳,黄明,陈栋,向素琼,郭启高,梁国鲁,熊伟. 野生李用于巫山脆李砧木的适宜性研究. 西南大学学报(自然科学版). 2023(03): 74-87 .
    13. 马静,贺熙勇,陶亮,吴超,李志强,宫丽丹. 基于叶片解剖结构的澳洲坚果种质资源抗旱性评价. 热带作物学报. 2023(07): 1392-1399 .
    14. 仇杰,高超,罗洪发. 贵州西北喀斯特区古茶树叶片解剖结构及抗旱性评价. 西北植物学报. 2023(07): 1170-1184 .
    15. 董淑龙,马姜明,莫燕华,黎露. 红花檵木种质资源与应用研究综述. 广西林业科学. 2022(02): 290-297 .
    16. 董志君,高健洲,于晓南. 烯效唑对盆栽芍药生理特性及显微结构的影响. 北京林业大学学报. 2022(07): 117-125 .
    17. 王菲,程小毛,肖云龙,黄晓霞. 千家寨野生古茶树叶片解剖结构和化学组分计量特征对海拔梯度的适应. 生态学杂志. 2021(07): 1958-1968 .
    18. 景晨娟,陈雪峰,王端,季文章,武晓红. 三个李子品种叶片结构差异及其抗旱性分析. 北方园艺. 2021(15): 27-34 .
    19. 钟灶发,张利娟,高思思,彭婷. 干旱胁迫下4种柑橘砧木叶片细胞学特征及抗旱性比较. 园艺学报. 2021(08): 1579-1588 .
    20. 周荧,王頔,聂飞. 贵州省两个蓝莓品种组培苗和扦插苗干旱胁迫响应. 南方农业. 2021(20): 171-174+178 .
    21. 郭燕,张树航,李颖,张馨方,王广鹏. 中国板栗238份品种(系)叶片形态、解剖结构及其抗旱性评价. 园艺学报. 2020(06): 1033-1046 .
    22. 董章宏,尹亚梅,徐剑,李显煌,瞿绍宏,辛静,常晓勇,辛培尧. 滇杨雌、雄株茎叶解剖结构差异分析. 云南农业大学学报(自然科学). 2020(03): 502-510 .
    23. 谭莎,赖路伟,黄永芳,叶小萍,谭健彬,许雄坚. 3个山茶品种对干旱胁迫的生理响应. 亚热带植物科学. 2020(05): 335-339 .
    24. 崔杰,洪文君,刘俊,陈伟玉,何书奋,罗金环. 极小种群野生植物海南假韶子结构解剖特征研究. 广东农业科学. 2019(11): 31-36 .

    Other cited types(22)

Catalog

    Article views (700) PDF downloads (889) Cited by(46)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return