Advance Search
Chen Xiao-Lin, Chen Ya-Peng, Li Wei-Hong, Wang Yu-Yang. Spatial distribution characteristics of fine roots of Populus euphratica Oliv. under different groundwater depths in arid regions[J]. Plant Science Journal, 2018, 36(1): 45-53. DOI: 10.11913/PSJ.2095-0837.2018.10045
Citation: Chen Xiao-Lin, Chen Ya-Peng, Li Wei-Hong, Wang Yu-Yang. Spatial distribution characteristics of fine roots of Populus euphratica Oliv. under different groundwater depths in arid regions[J]. Plant Science Journal, 2018, 36(1): 45-53. DOI: 10.11913/PSJ.2095-0837.2018.10045

Spatial distribution characteristics of fine roots of Populus euphratica Oliv. under different groundwater depths in arid regions

Funds: 

This work was supported by grants from the Pioneer Initiative Program of Chinese Academy of Science (TSS-2015-014-FW-2-3) and National Natural Science Foundation of China (41371515).

More Information
  • Received Date: July 16, 2017
  • Available Online: October 31, 2022
  • Published Date: February 27, 2018
  • The spatial distribution of fine roots can well reflect the utilization degree and adaptability of plants to the environment, which is essential for the evaluation of adaptation to adverse circumstances. We investigated the spatial distribution of Populus euphratica Oliv. fine roots (D ≤ 2 mm) and the relationship with groundwater depth and soil water content. Fine roots and soil samples were collected by the artificial trench profile method. Results showed that:(1) In the horizontal direction (range of 550 cm), fine root length density (RLD), fine root surface area density (SAD), and fine root mass density (RMD) of< P. euphratica changed insignificantly with distance from the tree trunk. (2) In the vertical direction, there were almost no fine roots in the top layer of the soil profile. With the increase in soil depth, both RLD and RMD exhibited increasing trends at first, and then showed decreasing trends. We found high fine specific root length (SRL) and specific root area (SRA) of< P. euphratica at the 280 cm soil depth. (3) RLD and RMD showed positive correlations with soil moisture content of the upper soil (0-180 cm), but exhibited spatial heterogeneities with soil moisture at deeper layers. These results revealed that P. euphratica roots were restricted by soil water conditions in the upper soil, and the fine roots in deeper soil were mainly affected by groundwater. The P. euphratica root system not only demonstrated the ability to develop into the deep moist soil, but also showed a strong horizontal expansion capability to cope with drought environments. This study provides a reference for understanding the adaptation mechanism of P. euphratica to extremely arid environments.
  • [1]
    Leppälammi-Kujansuu J, Aro L, Salemaa M, Hansson K, Kleja DB, Helmisaari HS. Fine root longevity and carbon input into soil from below-and aboveground litter in climatically contrasting forests[J]. For Ecol Manage, 2014, 326(8):79-90.
    [2]
    Iversen CM. Using root form to improve our understanding of root function[J]. New Phytol, 2014, 203(3):707-709.
    [3]
    杨秀云, 郭平毅, 韩有志, 宁鹏, 武小钢. 采伐干扰对林下草本根系生物量与土壤环境异质性关系的影响[J]. 植物科学学报, 2012, 30(6):545-551.

    Yang XY, Guo PY, Han YZ, Ning P, Wu XG. Effects of cutting disturbance on spatial heterogeneity between root biomass of the herb and soil environment in Larix principis-rupprechtii forests in Guandi Mountain[J]. Plant Science Journal, 2012, 30(6):545-551.
    [4]
    Long YQ, Kong DL, Chen ZX, Zeng H. Variation of the linkage of root function with root branch order[J]. PloS One, 2013, 8(2):e57153.
    [5]
    Fitter AH. Characteristics and functions of root systems[C]//Waisel Y, Eshel A, Kafkafi U, eds. Plant Roots:The Hidden Half. New York:Marcel Dekker, 1996:1-20.
    [6]
    韩路, 王家强, 王海珍, 牛建龙, 于军. 塔里木荒漠绿洲过渡带主要种群生态位与空间格局分析[J]. 植物科学学报, 2016, 34(3):352-360.

    Han L, Wang JQ, Wang HZ, Niu JL, Yu J. Niche and spatial distribution pattern analysis of the main populations of the Tarim desert-oasis ecotone[J]. Plant Science Journal, 2016, 34(3):352-360.
    [7]
    王海珍, 陈加利, 韩路, 徐雅丽, 贾文锁. 地下水位对胡杨(Populus euphratica)和灰胡杨(Populus pruinosa)叶绿素荧光光响应与光合色素含量的影响[J]. 中国沙漠, 2013, 33(4):1054-1063.

    Wang HZ, Chen JL, Han L, Xu YL, Jia WS. Effects of groundwater levels on photosynthetic pigments and light response of chlorophyⅡ fluorescence parameters of Populus euphratica and Populus pruinosa[J]. Journal of Desert Research, 2013, 33(4):1054-1063.
    [8]
    周多多, 蒋少伟, 吴桂林, 李君. 不同水分条件下胡杨光响应曲线拟合模型比较[J]. 植物科学学报, 2017,35(3):406-412.

    Zhou DD, Jiang SW, Wu GL, Li J. Comparison of light response models of photosynthesis in Populus euphratica Oliv. grown under contrasting groundwater conditions[J]. Plant Science Journal, 2017, 35(3):406-412.
    [9]
    任志国, 陈亚鹏, 李卫红, 刘树宝. 地下水埋深对塔里木河下游建群种植物叶片d13C值的影响[J]. 草业学报, 2014, 23(2):76-82.

    Ren ZG, Chen YP, Li WH, Liu SB. The effect of groundwater depth on the d13C value of constructive species leaf in the lower reaches of the Tarim River[J]. Acta Prataculturae Sinica, 2014, 23(2):76-82.
    [10]
    Pei ZQ, Xiao CW, Dong D, Zhang SR. Comparison of the fine root dynamics of Populus euphratica forests in diffe-rent habitats in the lower reaches of the Tarim River in Xinjiang, China, during the growing season[J]. J Forest Res-Jpn, 2012, 17(4):343-351.
    [11]
    夏延国,董芳宇,吕爽,王键铭,井家林,李景文. 极端干旱区胡杨细根的垂直分布和季节动态[J]. 北京林业大学学报, 2015, 37(7):37-44.

    Xia YG, Dong FY, Lü S, Wang JM, Jing JL, Li JW. Vertical distribution and seasonal dynamics of fine roots in Populus euphratica plantation in the extremely drought area[J]. Journal of Beijing Forestry University, 2015, 37(7):37-44.
    [12]
    司建华, 冯起, 李建林, 赵健. 荒漠河岸林胡杨吸水根系空间分布特征[J]. 生态学杂志, 2007, 26(1):1-4.

    Si JH, Feng Q, Li JL, Zhao J. Spatial distribution pattern of Populus euphratica fine roots in desert riparian forest[J]. Chinese Journal of Ecology, 2007, 26(1):1-4.
    [13]
    黄晶晶, 井家林, 曹德昌, 张楠, 李景文, 夏延国, 吕爽. 不同林龄胡杨克隆繁殖根系分布特征及其构型[J]. 生态学报, 2013,33(14):4331-4342.

    Huang JJ, Jing JL, Cao DC, Zhang N, Li JW, Xia YG, Lü S. Cloning root system distribution and architecture of different forest age Populus euphratica in Ejina Oasis[J]. Acta Ecologica Sinica, 2013, 33(14):4331-4342.
    [14]
    冯起, 司建华, 李建林, 席海洋. 胡杨根系分布特征与根系吸水模型建立[J]. 地球科学进展, 2008, 23(7):765-772.

    Feng Q, Si JH, Li JL, Xi HY. Feature of root distribution of Populus euphratica and its water uptake model in extreme arid region[J]. Advances in Earth Science, 2008, 23(7):765-772.
    [15]
    Zhu YH, Ren LL, Skaggs TH, Lyu HS, Yu ZB, Wu YQ, Fang XQ. Simulation of Populus euphratica root uptake of groundwater in an arid woodland of the Ejina Basin, China[J]. Hydrol Processes, 2009, 23(17):2460-2469.
    [16]
    苏里坦, 古力米热·哈那提, 刘迁迁. 塔里木河下游胡杨林根系吸水模型[J]. 干旱区地理, 2017, 40(1):102-107.

    Su LT, Hanati G, Liu QQ. Root water uptake model of Populus euphratica in the lower reaches of Tarim River[J]. Arid Land Geography, 2017, 40(1):102-107.
    [17]
    吕爽, 张现慧, 张楠, 夏延国, 井家林, 李景文. 胡杨幼苗根系生长与构型对土壤水分的响应[J]. 西北植物学报, 2015, 35(05):1005-1012.

    Lü S, Zhang XH, Zhang N, Xia YG, Jing JL, Li JW. Response of root growth and architecture of Populus euphratica seedling on soil water[J]. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(5):1005-1012.
    [18]
    李建林, 冯起, 司建华, 常宗强, 苏永红, 席海洋. 极端干旱地区胡杨林根系分布的非线性分析[J]. 北京林业大学学报, 2007, 29(6):109-114.

    Li JL, Feng Q, Si JH,Chang ZQ, Su YH, Xi HY. Nonli-near analysis of root distribution of Populus euphratica forests in the extremely arid region-Ejina, Inner Mongolia in northern China[J]. Journal of Beijing Forestry University, 2007, 29(6):109-114.
    [19]
    木巴热克·阿尤普, 陈亚宁, 李卫红, 郝兴明, 马建新, 苏芮. 极端干旱环境下的胡杨细根分布与土壤特征[J]. 中国沙漠, 2011, 31(6):1449-1458.

    Ayup M, Chen YN, Li WH, Hao XM, Ma JX, Su R. Fine root distribution of Populus euphratica Oliv. and its relations with soil factors under extremely arid environment[J]. Journal of Desert Research, 2011, 31(6):1449-1458.
    [20]
    叶茂, 徐海量, 王晓峰, 申瑞新. 塔里木河下游阿拉干断面胡杨根系空间分布规律研究[J]. 西北植物学报, 2011, 31(4):801-807.

    Ye M, Xu HL, Wang XF, Shen RX. Spatial distribution characteristics of root system of Populus euphratica in the Algan transection of the lower Tarim River[J]. Acta Bota-nica Boreali-Occidentalia Sinica, 2011, 31(4):801-807.
    [21]
    付爱红, 陈亚宁, 李卫红. 极端干旱区旱生芦苇叶水势变化及其影响因子研究[J]. 草业学报, 2012, 21(3):163-170.

    Fu AH, Chen YN, Li WH. Analysis on dominant factors influencing water potential of Phragmites australis in extremely arid areas[J]. Acta Prataculturae Sinica, 2012, 21(3):163-170.
    [22]
    李建林, 冯起, 司建华. 极端干旱区胡杨吸水根系的分布与模拟研究[J]. 干旱区地理, 2008, 31(1):97-101.

    Li JL, Feng Q, Si JH. Distribution of uptake roots of Populus euphratica Oliv. in extreme arid region, China[J]. Arid Land Geography, 2008, 31(1):97-101.
    [23]
    Imada S, Taniguchi T, Acharya K, Yamanaka N. Vertical distribution of fine roots of Tamarix ramosissima in an arid region of southern Nevada[J]. J Arid Environ, 2013, 92:46-52.
    [24]
    Zhou ZC, Shangguan ZP. Vertical distribution of fine roots in relation to soil factors in Pinus tabulaeformis Carr. forest of the Loess Plateau of China[J]. Plant Soil, 2007, 291(1-2):119-129.
    [25]
    王文, 蒋文兰, 谢忠奎, 张德罡, 宫旭胤, 寇江涛. 黄土丘陵地区唐古特白刺根际土壤水分与根系分布研究[J]. 草业学报, 2013, 22(1):20-28.

    Wang W, Jiang WL, Xie ZK, Zhang DG, Gong XY, Kou JT. Study on soil water in rhizosphere and root system distribution of Nitraria tangutorum on Loess Plateau[J]. Acta Prataculturae Sinica, 2013, 22(1):20-28.
    [26]
    刘健, 贺晓, 包海龙, 周成军. 毛乌素沙地沙柳细根分布规律及与土壤水分分布的关系[J]. 中国沙漠, 2010, 30(6):1362-1366.

    Liu J, He X, Bao HL, Zhou CJ. Distribution of fine root of Salix psammophila and its relationship with soil moisture in Mu Us Sandland[J]. Journal of Desert Research, 2010, 30(6):1362-1366.
    [27]
    Tron S, Perona P, Gorla L, Schwarz M, Laio F, Ridolfi L. The signature of randomness in riparian plant root distributions[J]. Geophys Res Lett, 2015, 42(17):7098-7106.
    [28]
    Xu GQ, Yu DD, Li Y. Patterns of biomass allocation in Haloxylon persicum woodlands and their understory herbaceous layer along a groundwater depth gradient[J]. Forest Ecol Manag, 2017, 395:37-47.
    [29]
    刘波, 曾凡江, 郭海峰, 曾杰. 骆驼刺幼苗生长特性对不同地下水埋深的响应[J]. 生态学杂志, 2009, 28(2):237-242.

    Liu B, Zeng FJ, Guo HF, Zeng J. Effects of groundwater table on growth characteristics of Alhagi sparsifolia Shap. seedlings[J]. Chinese Journal of Ecology, 2009, 28(2):237-242.
    [30]
    Bauhus J, Khanna PK, Menden N. Aboveground and belowground interactions in mixed plantations of Eucalyptus globulus and Acacia mearnsii[J]. Can J Forest Res, 2000, 30(12):1886-1894.
    [31]
    Berntson GM. Modelling root architecture:are there tradeoffs between efficiency and potential of resource acquisition?[J]. New Phytol, 1994, 127(3):483-493.
    [32]
    Jongrungklang N, Toomsan B, Vorasoot N, Jogloy S, Boote KJ, Hoogenboom G, Patanothai A. Rooting traits of peanut genotypes with different yield responses to pre-flowering drought stress[J]. Field Crop Res, 2011, 120(2):262-270.
    [33]
    张现慧, 钟悦鸣, 谭天逸, 吕爽, 王健铭, 李景文. 土壤水分动态对胡杨幼苗生长分配策略的影响[J]. 北京林业大学学报, 2016, 38(5):92-99.

    Zhang XH, Zhong YM, Tan TY, Lü S, Wang JM, Li JW. Effect of soil moisture dynamics on growth and allocation strategy of Populus euphratica seedlings[J]. Journal of Beijing Forestry University, 2016, 38(5):92-99.
    [34]
    February EC, Higgins SI. The distribution of tree and grass roots in savannas in relation to soil nitrogen and water[J]. S Afr J Bot, 2010, 76(3):517-523.
    [35]
    Jian SQ, Zhao CY, Fang SM, Yu K. The distribution of fine root length density for six artificial afforestation tree species in Loess Plateau of Northwest China[J]. Forest Syst, 2015, 24(1):3.
  • Related Articles

    [1]HU Guang-ming, XIA Wen-juan, ZHENG Li, RAO Hang-kong, LEI Ming, WANG Jian, ZHAO Ting-ting, LI Zuo-zhou, ZHONG Cai-hong. Investigation and fruit genetic diversity analysis of wild Actinidia germplasm resources in Tongshan County, Hubei Province[J]. Plant Science Journal, 2021, 39(6): 620-631. DOI: 10.11913/PSJ.2095-0837.2021.60620
    [2]Chen Mei-Yan, Zhao Ting-Ting, Liu Xiao-Li, Han Fei, Zhang Peng, Zhong Cai-Hong. Factor analysis and comprehensive evaluation of fruit quality of ‘Jinyan’ kiwifruit (Actinidia eriantha×Actinidia chinensis)[J]. Plant Science Journal, 2021, 39(1): 85-92. DOI: 10.11913/PSJ.2095-0837.2021.10085
    [3]WANG Rong, HE Zhi-Chong, FANG Xue-Min, CHEN Dan-Li, WANG Qi, MENG Jia-Song, ZHAO Da-Qiu. Analysis of Phenotypic Diversity of Paeonia lactiflora Cultivars in Yangzhou[J]. Plant Science Journal, 2016, 34(6): 901-908. DOI: 10.11913/PSJ.2095-0837.2016.60901
    [4]YANG Xiao-Hui, ZHAO Xue-Li, GAO Xin-Fen. Morphological Variation and ITS Sequence Analysis of the Indigofera szechuensis Complex[J]. Plant Science Journal, 2015, 33(6): 727-733. DOI: 10.11913/PSJ.2095-0837.2015.60727
    [5]CAI Jun-Long, LU Jin-Qing, LI Qiang, GUO Sheng-Nan, DAI Yi. Analysis on Volatile Components of Caryophylli Flos from Different Habitats[J]. Plant Science Journal, 2015, 33(2): 251-258. DOI: 10.11913/PSJ.2095-0837.2015.20251
    [6]CHEN Sui-Qing, SONG Jun, CUI Can. Research and Evaluation on Chemical Fingerprints of Diterpenoids from Rabdosia rubescens[J]. Plant Science Journal, 2012, 30(5): 519-527. DOI: 10.3724/SP.J.1142.2012.50519
    [7]SHU Xiao, YANG Zhi-Ling, YANG Xu, DUAN Hong-Ping, YU Hua-Hui, LIU Ruo-Nan. Variation in Traits of Magnolia officinalis Seedlings from Different Provenances and Their Principal Component Analysis[J]. Plant Science Journal, 2010, 28(5): 623-630.
    [8]LI Ren-Wei, ZHANG Hung-Ta. Analysis on the Components of Seed Plant Flora in Sichuan Region[J]. Plant Science Journal, 2002, 20(5): 381-386.
    [9]Xiong Xiufang, Zhang Yinhua, Gong Fujun, Nan Peng, Yuan Ping, Wang Guoliang. STUDIES ON THE CHEMICAL CONSTITUENTS OF THE VOLATILE OIL FROM CHENOPODIUM AMBROSIOIDES L.GROWN IN HUBEI[J]. Plant Science Journal, 1999, 17(3): 244-248.
    [10]He Jingbiao, Sun Xiangzhong, Wang Huiqin, Zhong Yang, Huang Deshi. ANALYSES ON THE CHARACTERS OF THE GENUS OTTELIA (HYDROCHARITACEAE) IN CHINA[J]. Plant Science Journal, 1992, 10(2): 101-108.
  • Cited by

    Periodical cited type(24)

    1. 胡星,胡纪龙,张敏,刘娇,黄晓霞. 外源NO对盐胁迫下八角金盘叶片生理特性及解剖结构的影响. 西南林业大学学报(自然科学). 2025(01): 68-77 .
    2. 张伟溪,丁密,苏晓华,李爱平,王小江,余金金,李政宏,黄秦军,丁昌俊. 小叶杨×欧洲黑杨杂交F_1代生长及叶片解剖结构杂种优势分析与抗旱性评价. 南京林业大学学报(自然科学版). 2025(01): 46-58 .
    3. 赵莹. 叶形与叶色在园林景观设计中的应用. 分子植物育种. 2025(02): 622-627 .
    4. 邱彦芬,杨湉,吴裕. 基于叶片解剖结构评价不同倍性橡胶树无性系抗旱性. 热带农业科技. 2024(02): 61-67 .
    5. 萨其拉,张霞,朱琳,康萨如拉. 长期不同放牧强度下荒漠草原优势种无芒隐子草叶片解剖结构变化. 植物生态学报. 2024(03): 331-340 .
    6. 胡光明,肖涛,彭家清,李大卫,田华,王华玲,肖丽丽,程均欢,黄海雷,吴伟,钟彩虹. 基于叶片形态及显微特征评价12个猕猴桃栽培品种的抗旱性. 果树学报. 2024(05): 911-928 .
    7. 刘柯珍,何诚. 微观视角下防火树种特征研究动态. 西南林业大学学报(自然科学). 2024(03): 212-220 .
    8. 肖刚,赵峰,李世民,刘帅,路艳. 高速公路中央分隔带绿化植物对干旱胁迫的生理响应和抗旱性评价. 山东交通科技. 2024(03): 81-85 .
    9. 罗玲,刘伟,梁东,马一君,李然,吕秀兰. 不同架形对阳光玫瑰葡萄叶幕生态和高温下应逆生理的影响. 果树学报. 2024(12): 2444-2462 .
    10. 侯立伟,鲁绍伟,李少宁,赵娜,徐晓天. 城市绿化灌木耐旱性评价及灌溉制度研究进展. 世界林业研究. 2023(01): 45-51 .
    11. 孙一鑫,马乐乐,苗丽丽,何佳星,李建明. 基于光辐射时滞效应的温室番茄蒸腾量模型的构建. 西北农林科技大学学报(自然科学版). 2023(02): 83-92 .
    12. 何桥,向海洋,向芳,黄明,陈栋,向素琼,郭启高,梁国鲁,熊伟. 野生李用于巫山脆李砧木的适宜性研究. 西南大学学报(自然科学版). 2023(03): 74-87 .
    13. 马静,贺熙勇,陶亮,吴超,李志强,宫丽丹. 基于叶片解剖结构的澳洲坚果种质资源抗旱性评价. 热带作物学报. 2023(07): 1392-1399 .
    14. 仇杰,高超,罗洪发. 贵州西北喀斯特区古茶树叶片解剖结构及抗旱性评价. 西北植物学报. 2023(07): 1170-1184 .
    15. 董淑龙,马姜明,莫燕华,黎露. 红花檵木种质资源与应用研究综述. 广西林业科学. 2022(02): 290-297 .
    16. 董志君,高健洲,于晓南. 烯效唑对盆栽芍药生理特性及显微结构的影响. 北京林业大学学报. 2022(07): 117-125 .
    17. 王菲,程小毛,肖云龙,黄晓霞. 千家寨野生古茶树叶片解剖结构和化学组分计量特征对海拔梯度的适应. 生态学杂志. 2021(07): 1958-1968 .
    18. 景晨娟,陈雪峰,王端,季文章,武晓红. 三个李子品种叶片结构差异及其抗旱性分析. 北方园艺. 2021(15): 27-34 .
    19. 钟灶发,张利娟,高思思,彭婷. 干旱胁迫下4种柑橘砧木叶片细胞学特征及抗旱性比较. 园艺学报. 2021(08): 1579-1588 .
    20. 周荧,王頔,聂飞. 贵州省两个蓝莓品种组培苗和扦插苗干旱胁迫响应. 南方农业. 2021(20): 171-174+178 .
    21. 郭燕,张树航,李颖,张馨方,王广鹏. 中国板栗238份品种(系)叶片形态、解剖结构及其抗旱性评价. 园艺学报. 2020(06): 1033-1046 .
    22. 董章宏,尹亚梅,徐剑,李显煌,瞿绍宏,辛静,常晓勇,辛培尧. 滇杨雌、雄株茎叶解剖结构差异分析. 云南农业大学学报(自然科学). 2020(03): 502-510 .
    23. 谭莎,赖路伟,黄永芳,叶小萍,谭健彬,许雄坚. 3个山茶品种对干旱胁迫的生理响应. 亚热带植物科学. 2020(05): 335-339 .
    24. 崔杰,洪文君,刘俊,陈伟玉,何书奋,罗金环. 极小种群野生植物海南假韶子结构解剖特征研究. 广东农业科学. 2019(11): 31-36 .

    Other cited types(22)

Catalog

    Article views (810) PDF downloads (1045) Cited by(46)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return