Study on rhizosphere microorganism diversity of a myco-heterotrophic orchid endemic to North China, Holopogon pekinensis X. Y. Mu & Bing Liu
-
摘要: 北京无喙兰(Holopogon pekinensis X. Y. Mu & Bing Liu)为华北地区特有珍稀腐生型兰科植物,分布在海拔约1100 m的杂木林内,生境与本区域内其他腐生型兰科植物(常在1600 m以上桦木林中生长)显著不同。本研究针对北京玉渡山和百花山两个北京无喙兰种群的根际土壤样品开展基于高通量测序技术的根际土壤微生物多样性分析,解析北京无喙兰根际土壤微生物群落组成及多样性。测序分析结果显示,共得到4973个细菌OTU(Operational taxonomic unit),发现北京无喙兰根际土壤的优势细菌类群为变形菌门、放线菌门、拟杆菌门等7个门,优势属有MND1、硝化螺菌属(Nitrospira)和Haliangium等。1914个真菌OTU的分析结果表明,根际土壤优势真菌类群为子囊菌门、担子菌门、结合菌门等;优势属有Archaeorhizomyces、蜡壳耳属(Sebacina)和被孢霉属(Mortierella)等;优势真菌多为外生菌根真菌,可能是北京无喙兰潜在的菌根真菌。多样性指数分析显示,北京无喙兰玉渡山种群根际土壤中的真菌和细菌群落的丰富度和均匀度均高于百花山种群,各种群土壤微生物多样性与北京无喙兰所在种群的乔木种类多样性具有一定的相关性。Abstract: Holopogon pekinensis X. Y. Mu & Bing Liu, a rare saprophytic orchid unique to North China, is distributed in mixed-wood forests at an altitude of about 1100 m with large habitat variety, which is significantly different from other saprophytic orchids (usually under birch forests above 1600 m) with large habitat differences. In this study, rhizosphere soil samples from two populations of H. pekinensis in the Beijing Yudu and Baihua mountains were collected to analyze microbial diversity using high-throughput sequencing. Based on the 4973 bacterial operational taxonomic units (OTUs) identified, the dominant bacterial groups consisted of seven phyla, including Proteobacteria, Actinobacteria, and Bacteroidetes, and the dominant genera included MND1, Nitrospira, and Haliangium. Based on the 1914 fungal OTUs identified, the dominant fungal groups were Ascomycota, Basidiomycota, and Zygomycota and the dominant genera were Archaeorhizomyces, Sebacina, and Mortierella. Most of them are ectomycorrhizal fungi and consistent with the existing reports of orchid mycorrhizal fungi, so they are most likely to be the potential mycorrhizal fungi of H. pekinensis. Diversity index analysis indicated that fungal and bacterial community richness and evenness in the rhizosphere soil were higher in the Yudu Mountain population than in the Baihua Mountain population. Soil microbial diversity showed a certain correlation with arbor species diversity in the two H. pekinensis populations.
-
-
[1] Chase MW, Cameron KM, Freudenstein JV, Pridgeon AM, Salazar G, et al. An updated classification of Orchidaceae[J]. Bot J Linn Soc, 2015, 177(2):151-174.
[2] Christenhusz MJM, Byng JW. The number of known plants species in the world and its annual increase[J]. Phytotaxa, 2016, 261(3):201-217.
[3] Givnish TJ, Spalink D, Ames M, Lyon SP, Hunter SJ, et al. Orchid historical biogeography, diversification, Antarctica and the paradox of orchid dispersal[J]. J Biogeogr, 2016, 43(10):1905-1916.
[4] Martín-Forés I, Bywaters SL, Sparrow B, Guerin GR. Si-multaneous effect of habitat remnancy, exotic species, and anthropogenic disturbance on orchid diversity in South Australia[J]. Conserv Sci Pract, 2022, 4(4):e12652.
[5] Phelps J, Webb EL. "Invisible" wildlife trades:Southeast Asia's undocumented illegal trade in wild ornamental plants[J]. Biol Conserv, 2015, 186:296-305.
[6] Hinsley A, Nuno A, Ridout M, John FAVS, Roberts DL. Estimating the extent of cites noncompliance among tra-ders and end-consumers; lessons from the global orchid trade:cites noncompliance among end-consumers[J]. Conserv Lett, 2017, 10(5):602-609.
[7] 覃海宁,杨永,董仕勇,何强,贾渝,等.中国高等植物受威胁物种名录[J].生物多样性, 2017, 25(7):696-744. Qin HN, Yang Y, Dong SY, He Q, Jia Y, et al. Threa-tened species list of China's higher plants[J]. Biodiversity Science, 2017, 25(7):696-744.
[8] Ren H, Qin HN, Ouyang ZY, Wen XY, Jin XH, et al. Progress of implementation on the global strategy for plant conservation in (2011-2020) China[J]. Biol Conserv, 2019, 230:169-178.
[9] Liu H, Liu ZJ, Jin XH, Gao JY, Chen Y, et al. Assessing conservation efforts against threats to wild orchids in China[J]. Biol Conserv, 2020, 243:108484.
[10] 罗毅波,贾建生,王春玲.中国兰科植物保育的现状和展望[J].生物多样性, 2003, 11(1):70-77. Luo YB, Jia JS, Wang CL. A general review of the conservation status of Chinese orchids[J]. Biodiversity Science, 2003, 11(1):70-77.
[11] Dearnaley JDW, Martos F, Selosse MA. 12 orchid mycorrhizas:molecular ecology, physiology, evolution and conservation aspects[M]//Hock B, ed. Fungal Associations. Berlin:Springer, 2012:207-230.
[12] Merckx VSFT, Bidartondo MI, Hynson NA. Myco-heterotrophy:when fungi host plants[J]. Ann Bot, 2009, 104(7):1255-1261.[FQ (+5mm。46,ZX,DY-W] [FQ)] [HT6]
[13] Merckx VSFT. Mycoheterotrophy:an introduction[M]//Merckx VSFT, ed. Mycoheterotrophy:The Biology of Plants Living on Fungi. New York:Springer, 2013:1-17.
[14] 孙悦,李标,郭顺星.腐生型兰科植物研究进展[J].广西植物, 2017, 37(2):191-203. Sun Y, Li B, Guo SX. Research progress of saprophytic orchids[J]. Guihaia, 2017, 37(2):191-203.
[15] 赵颖,王素玲,陈超,奚梅杰,王晓燕,等.连作对猕猴桃根际土细菌群落结构的影响[J].上海农业学报, 2022, 38(2):53-62. Zhao Y, Wang SL, Chen C, Xi MJ, Wang XY, et al. Effects of continuous cropping on bacterial community structure in rhizosphere soil of Actinidia chinensis[J]. Acta Agriculturae Shanghai, 2022, 38(2):53-62.
[16] Huang LF, Song LX, Xia XJ, Mao WH, Shi K, et al. Plant-soil feedbacks and soil sickness:from mechanisms to application in agriculture[J]. J Chem Ecol, 2013, 39(2):232-242.
[17] Pii Y, Borruso L, Brusetti L, Crecchio C, Cesco S, et al. The interaction between iron nutrition, plant species and soil type shape the rhizosphere microbiome[J]. Plant Physiol Biochem, 2016, 99:39-48.
[18] 陆雅海,张福锁.根际微生物研究进展[J].土壤, 2006, 38(2):113-121. Lu YH, Zhang FS. The advances in rhizosphere microbio-logy[J]. Soils, 2006, 38(2):113-121.
[19] Sørensen J, Haubjerg Nicolaisen M, Ron E, Simonet P. Molecular tools in rhizosphere microbiology-from single-cell to whole-community analysis[J]. Plant Soil, 2009, 321:483-512.
[20] 赵佳,孙毅,梁宏,黄静,杜建中.现代生物技术在根际微生物群落研究中的应用[J].生物技术通报, 2012, 12:65-70. Zhao J, Sun Y, Liang H, Huang J, Du JZ. The application of modern biotechnology in the research of rhizosphere microbial community[J]. Biotechnology Bulletin, 2012, 12:65-70.
[21] Lagos L, Maruyama F, Nannipieri P, Mora ML, Ogram A, et al. Current overview on the study of bacteria in the rhizosphere by modern molecular techniques:a mini-review[J]. J Soil Sci Plant Nutr, 2015, 15(2):504-523.
[22] McCormick MK, Whigham DF, Canchani-Viruet A. Mycorrhizal fungi affect orchid distribution and population dynamics[J]. New Phytol, 2018, 219(4):1207-1215.
[23] Liu HX, Luo YB, Liu H. Studies of mycorrhizal fungi of Chinese orchids and their role in orchid conservation in China:a review[J]. Bot Rev, 2010, 76(2):241-262.
[24] Waud M, Wiegand T, Brys R, Lievens B, Jacquemyn H. Nonrandom seedling establishment corresponds with distance-dependent decline in mycorrhizal abundance in two terrestrial orchids[J]. New Phytol, 2016, 211(1):255-264.
[25] Zhang T, Wang Z, Lv X, Li Y, Zhuang L. High-throughput sequencing reveals the diversity and community structure of rhizosphere fungi of Ferula sinkiangensis at different soil depths[J]. Sci Rep, 2019, 9:6558.
[26] Oliveira SF, Bocayuva MF, Veloso TG, Bazzolli DM, da Silva CC, et al. Endophytic and mycorrhizal fungi associa-ted with roots of endangered native orchids from the Atlantic Forest, Brazil[J]. Mycorrhiza, 2014, 24(1):55-64.
[27] Chen YH, Gao Y, Song LL, Zhao ZY, Guo SX, et al. Mycorrhizal fungal community composition in seven orchid species inhabiting Song Mountain, Beijing, China[J]. Science China (Life Sciences), 2019, 62(6):838-847.
[28] 蒋玉玲,陈旭辉,苗青,曲波.辽宁省9种兰科植物根内与根际土壤中真菌群落结构的差异[J].植物生态学报, 2019, 43(12):1079-1090. Jiang YL, Chen XH, Miao Q, Qu B. Difference in fungal communities between in roots and in root-associated soil of nine orchids in Liaoning, China[J]. Chinese Journal of Plant Ecology, 2019, 43(12):1079-1090.
[29] Kaur J, Sharma J. Orchid root associated bacteria:linchpins or accessories[J]. Front Plant Sci, 2021, 12:661966.
[30] Wilkinson KG, Dixon KW, Sivasithamparam K. Interaction of soil bacteria, mycorrhizal fungi and orchid seed in relation to germination of Australian orchids[J]. New Phytol, 1989, 112(3):429-435.
[31] Wilkinson KG, Dixon KW, Sivasithamparam K, Ghisalberti EL. Effect of IAA on symbiotic germination of an Australian orchid and its production by orchid-associated bacteria[J]. Plant Soil, 1994, 159(2):291-295.
[32] Tsavkelova EA, Cherdyntseva TA, Lobakova ES, Kolomeitseva GL, Netrusov AI. Microbiota of the orchid rhizoplane[J]. Microbiology, 2001, 70(4):492-497.
[33] Tsavkelova EA, Cherdyntseva TA, Netrusov AI. Bacteria associated with the roots of epiphytic orchids[J]. Micro-biology, 2004, 73(6):710-715.
[34] Tsavkelova EA, Cherdyntseva TA, Botina SG, Netrusov AI. Bacteria associated with orchid roots and microbial production of auxin[J]. Microbiol Res, 2007, 162(1):69-76.
[35] Júnior RFG, Pedrinho EAN, Castellane TCL, Lemos EGDM. Auxin-producing bacteria isolated from the roots of Cattleya walkeriana, an endangered Brazilian orchid, and their role in acclimatization[J]. Rev Bras Ciênc Solo, 2011, 35(3):729-737.
[36] Yang S, Zhang X, Cao Z, Zhao K, Wang S, et al. Growth promoting Sphingomonas paucimobilis ZJSH1 associated with Dendrobium officinale through phytohormone production and nitrogen fixation[J]. Microb Biotechnol, 2014, 7(6):611-620.[FQ (+5mm。46,ZX,DY-W] [FQ)] [HT6]
[37] Wang X, Yam TW, Meng Q, Zhu J, Zhang P, et al. The dual inoculation of endophytic fungi and bacteria promotes seedlings growth in Dendrobum catenatum (Orchida-ceae) under in vitro culture conditions[J]. Plant Cell, 2016, 126(3):523-531.
[38] Herrera H, Sanhueza T, Novotná A, Charles TC, Arriagada C. Isolation and identification of endophytic bacteria from mycorrhizal tissues of terrestrial orchids from Southern Chile[J]. Diversity, 2020, 12(2):55.
[39] Mu XY, Liu B, Zhu YX, Tong L, Lin QW, et al. Holopogon pekinensis (Orchidaceae), a new heteromycotrophic species from Northern China[J]. Phytotaxa, 2017, 326(2):151-155.
[40] 付亚娟,张剑,付琦媛,侯晓强.大花杓兰根际土壤真菌及兰科菌根真菌多样性分析[J].西南农业学报, 2019, 32(3):573-578. Fu YJ, Zhang J, Fu QY, Hou XQ. Diversity of rhizospheric fungi and potential orchid mycorrhizas on Cypripedium macranthum estimated by clone library technique[J]. Southwest China Journal of Agricultural Sciences, 2019, 32(3):573-578.
[41] 周柳婷,李建鹃,赵艳琳,罗扬,白莹,等.基于高通量测序的连栽木麻黄根际土壤细菌群落变化研究[J].生态学报, 2020, 40(8):2670-2679. Zhou LT, Li JJ, Zhao YL, Luo Y, Bai Y, et al. Variation of bacterial communities in the rhizosphere soils of successive rotations Casuarina equisetifolia plantations based on high-throughput sequencing analysis[J]. Acta Ecologica Sinica, 2020, 40(8):2670-2679.
[42] Reed SC, Cleveland CC, Townsend AR. Functional ecology of free-living nitrogen fixation:a contemporary perspective[J]. Annu Rev Ecol Evol S, 2011, 42:489-512.
[43] Berlemont R, Martiny AC. Genomic potential for polysaccharide deconstruction in bacteria[J]. Appl Environ Microb, 2015, 81(4):1513.
[44] López-Mondéjar R, Zühlke D, Becher D, Riedel K, Baldrian P. Cellulose and hemicellulose decomposition by forest soil bacteria proceeds by the action of structurally variable enzymatic systems[J]. Sci Rep, 2016, 6(1):25279.
[45] 柳春林,左伟英,赵增阳,邱礼鸿.鼎湖山不同演替阶段森林土壤细菌多样性[J].微生物学报, 2012, 52(12):1489-1496. Liu CL, Zuo WY, Zhao ZY, Qiu LH. Bacterial diversity of different successional stage forest soils in Dinghushan[J]. Acta Microbiologica Sinica, 2012, 52(12):1489-1496.
[46] 杜滢鑫,谢宝明,蔡洪生,唐璐,郭长虹.大庆盐碱地九种植物根际土壤微生物群落结构及功能多样性[J].生态学报, 2016, 36(3):740-747. Du YX, Xie BM, Cai HS, Tang L, Guo CH. Structural and functional diversity of rhizosphere microbial community of nine plant species in the Daqing Saline-alkali soil region[J]. Acta Ecologica Sinica, 2016, 36(3):740-747.
[47] 卢慧,赵珩,盛玉钰,丛薇,王秀磊,等.基于高通量测序的两种高寒草甸土壤原核生物群落特征研究[J].生态学报, 2018, 38(22):8080-8087. Lu H, Zhao H, Sheng YY, Cong W, Wang XL, et al. Soil prokaryotic community characteristics in two alpine mea-dow types based on high-throughput sequencing techniques[J]. Acta Ecologica Sinica, 2018, 38(22):8080-8087.
[48] 李岩,何学敏,杨晓东,张雪妮,吕光辉.不同生境黑果枸杞根际与非根际土壤微生物群落多样性[J].生态学报, 2018, 38(17):5983-5995. Li Y, He XM, Yang XD, Zhang XN, Lv GH. The microbial community diversity of the rhizosphere and bulk soils of Lycium ruthenicum in different habitats[J]. Acta Ecologica Sinica, 2018, 38(17):5983-5995.
[49] 姜雪薇,马大龙,臧淑英,张冬有,孙弘哲.高通量测序分析大兴安岭典型森林土壤细菌和真菌群落特征[J].微生物学通报, 2020, 48(4):1-15. Jiang XW, Ma DL, Zang SY, Zhang DY, Sun HZ. Cha-racteristics of soil bacterial and fungal community of typical forest in the Greater Khingan Mountains based on high-throughput sequencing[J]. Microbiology China, 2020, 48(4):1-15.
[50] 褚海燕,冯毛毛,柳旭,时玉,杨腾,等.土壤微生物生物地理学:国内进展与国际前沿[J].土壤学报, 2020, 579(3):515-529. Chu HY, Feng MM, Liu X, Shi Y, Yang T, et al. Soil microbial biogeography:recent advances in China and research frontiers in the world[J]. Acta Pedologica Sinica, 2020, 57(3):515-529.
[51] Pasquale A, Nicolò Lo M, Jacopo C, Samuele V, Anna Maria P, et al. Plant growth promoting potential of bacterial endophytes from three terrestrial mediterranean orchid species[J]. Plant Biosyst, 2021, 155(6):1153-1164.
[52] 安然,马风云,崔浩然,秦光华,黄雅丽,等.黄河三角洲刺槐臭椿混交林与纯林土壤细菌群落结构和多样性特征分析[J].生态学报, 2019, 39(21):7960-7967. An R, Ma FY, Cui HR, Qin GH, Huang YL, et al. Analysis of bacterial community structure and diversity characteristics of mixed forest of Robinia pseudoacacia and Ailanthus altissima and there pure forest in the Yellow River Delta[J]. Acta Ecologica Sinica, 2019, 39(21):7960-7967.
[53] Schabereiter-Gurtner C, Saiz-Jimenez C, Piñar G, Lubitz W, Rölleke S. Altamira cave Paleolithic paintings harbor partly unknown bacterial communities[J]. Fems Microbiol Lett, 2002, 211(1):7-11.
[54] Oja J, Vahtra J, Bahram M, Kohout P, Kull T, et al. Local-scale spatial structure and community composition of orchid mycorrhizal fungi in semi-natural grasslands[J]. Mycorrhiza, 2017, 27(4):355-367.
[55] 唐燕静,郭顺星,陈娟.兰科植物与菌根真菌专一性研究进展[J].首都师范大学学报(自然科学版), 2021, 42(3):63-74. Tang YJ, Guo SX, Chen J. Advances in the specificity of Orchid-mycorrhizal fungi[J]. Journal of Capital Normal University (Natural Science Edition), 2021, 42(3):63-74.
[56] 郭晓笑,魏杰,闫伟.棉革菌属Tomentella真菌菌根研究概况[J].内蒙古林业调查设计, 2017, 40(3):98-100. Guo XX, Wei J, Yan W. Research summary on the mycorrhizal fungi of Tomentella[J]. Inner Mongolia Forestry Investigation and Design, 2017, 40(3):98-100.
计量
- 文章访问数: 349
- HTML全文浏览量: 9
- PDF下载量: 228