高级检索+

树种组成和径级结构对热带次生林生物量恢复影响的研究

王璐颖, 周璋, 张涛, 林明献, 张春生, 李意德, 陈德祥

王璐颖, 周璋, 张涛, 林明献, 张春生, 李意德, 陈德祥. 树种组成和径级结构对热带次生林生物量恢复影响的研究[J]. 植物科学学报, 2022, 40(2): 169-176. DOI: 10.11913/PSJ.2095-0837.2022.20169
引用本文: 王璐颖, 周璋, 张涛, 林明献, 张春生, 李意德, 陈德祥. 树种组成和径级结构对热带次生林生物量恢复影响的研究[J]. 植物科学学报, 2022, 40(2): 169-176. DOI: 10.11913/PSJ.2095-0837.2022.20169
Wang Lu-Ying, Zhou Zhang, Zhang Tao, Lin Ming-Xian, Zhang Chun-Sheng, Li Yi-De, Chen De-Xiang. Effects of tree species composition and diameter class structure on biomass restoration of secondary tropical forest[J]. Plant Science Journal, 2022, 40(2): 169-176. DOI: 10.11913/PSJ.2095-0837.2022.20169
Citation: Wang Lu-Ying, Zhou Zhang, Zhang Tao, Lin Ming-Xian, Zhang Chun-Sheng, Li Yi-De, Chen De-Xiang. Effects of tree species composition and diameter class structure on biomass restoration of secondary tropical forest[J]. Plant Science Journal, 2022, 40(2): 169-176. DOI: 10.11913/PSJ.2095-0837.2022.20169

树种组成和径级结构对热带次生林生物量恢复影响的研究

基金项目: 

国家自然科学基金(41773071,41171040);国家林业局“尖峰岭生态定位站运行补助”计划(2020132002);科技部“海南尖峰岭森林生态系统重点野外科学观测研究站运行费”。

详细信息
    作者简介:

    王璐颖(1997-),女,硕士研究生,研究方向为森林生态学(E-mail:398637237@qq.com)。

    通讯作者:

    张春生,E-mail:bdhzcs@163.com

    陈德祥,E-mail:dchen@caf.ac.cn

  • 中图分类号: S758

Effects of tree species composition and diameter class structure on biomass restoration of secondary tropical forest

Funds: 

This work was supported by grants from the National Natural Science Foundation of China (41773071, 41171040), State Forestry Administration "Jianfengling Ecological Positioning Station Operation Subsidy" (2020132002), and Ministry of Science and Technology "Hainan Jianfengling Forest Ecosystem Key Field Scientific Observation and Research Station Operation Fee".

  • 摘要: 本研究在海南尖峰岭和吊罗山热带林区海拔245~1255 m范围内根据林分恢复时间设立固定监测样地,探讨了森林地上生物量与树种组成和径级结构的关系。结果显示:海南热带次生林平均地上生物量为(155.38 ± 37.16)×103 kg/hm2,其中低地次生雨林为(137.91 ± 31.02)×103 kg/hm2,山地次生雨林为(160.39 ± 42.13)×103 kg/hm2。自然恢复状态下的生物量恢复率与恢复时间呈显著正相关关系,但难以在短时间内恢复至原始林水平。生物量恢复受树种组成和径级结构的显著影响,大径级林木生物量占比随恢复时间显著增加,小径级林木生物量占比随恢复时间显著降低。恢复26年的山地次生雨林小径级林木生物量占比高出原始林58%,大径级林木生物量占比则低68%;恢复35年的低地雨林次生林小径级林木生物量占比比原始林高30%,大径级林木生物量占比则低20%;随恢复时间增加,速生树种的种类和数量逐渐减少,生物量占比下降7%左右;而慢生树种则均呈增加趋势,生物量增长20%~ 32%。本研究结果对热带森林的有效保护与科学恢复、提高森林碳汇能力等具有重要的指导意义。
    Abstract: In this study, 32 permanent plots with different recovery times were set up in Jianfengling and Diaoluoshan areas of Hainan Island within an elevational range of 245-1255 m above sea level in order to analyze the relationship between aboveground biomass and forest tree species composition and diameter at breast height (DBH) class. Results showed that the average aboveground biomass (AGB) of the pan-tropical forest was (155.38 ± 37.16) ×103 kg/hm2, while biomasses of the secondary forest of the lowland and montane rainforests were (137.91 ± 31.02) ×103 and (160.39 ± 42.13) ×103 kg/hm2, respectively. The biomass recovery rate and natural recovery time showed a significant positive correlation through binomial fitting, with more than 70 years required to restore 95% of AGB of the primary forest. In the process of community succession, the species composition and stand structure were constantly changing. The biomass proportion of the large-diameter tree class increased significantly with recovery time, whereas small-diameter trees decreased significantly with recovery time. The biomass ratio of the large-diameter tree class in the early recovery stage accounted for less than 10% of secondary forest, but increased to 20% in the middle recovery period, and reached 70% in primary forest. With ongoing recovery, the biomass ratio of fast-growing tree species in the community decreased by more than 10%,while the ratio of slow-growing tree species in the primary forest increased by 20%-32%. Thus, the AGB recovery rate in tropical secondary forests increased significantly with the increase in recovery time. The composition dynamics of large-diameter trees and slow-growing species during the recovery process are important drivers of forest biomass recovery. The results should help improve our understanding of the dynamic changes in AGB during tropical secondary forest recovery.
  • [1]

    Johnson MO, Galbraith D, Gloor E, Deurwaerder HD, Baker TR. Variation in stem mortality rates determines patterns of aboveground biomass in Amazonian forests:implications for dynamic global vegetation models[J]. Global Change Biol, 2016, 22(12):1-18.

    [2]

    Han YH, Luo Y, Reich PB, Searle EB, Biswas SR. Climate change-associated trends in net biomass change are age dependent in western boreal forests of Canada[J]. Ecol Lett, 2016, 19(9):1150-1158.

    [3]

    Poorter L, Bongers F, Aide MT, Almeyda Zambrano AM, Balvanera P, et al. Biomass resilience of Neotropical secondary forests[J]. Nature, 2016, 530(7589):211-214.

    [4]

    Houghton RA. Tropical deforestation and atmospheric carbon dioxide[J]. Clim Change, 1991, 19(1):99-118.

    [5]

    Hall CAS, Tian H, Qi Y, Pontius G, Cornell JD. Modelling spatial and temporal patterns of tropical land use change[J]. J Biogeogr, 1995, 22(4):753-757.

    [6]

    Melillo JM, Houghton RA, Kicklighter DW, Mcguire AD. Tropical deforestation and the global carbon budget[J]. Annu Rev Environ Resour, 2003, 21(1):293-310.

    [7]

    Lewis SL, Lopez-Gonzalez G, Sonke B, Affum-Baffoe K, Baker TR, et al. Increasing carbon storage in intact African tropical forests[J]. Nature, 2009, 457(7232):1003-1006.

    [8]

    Chua SC, Ramage BS, Ngo KM, Potts MD, Lum SKY. Slow recovery of a secondary tropical forest in Southeast Asia[J]. For Ecol Manag, 2013, 308(7):153-160.

    [9]

    Philipson CD, Cutler MEJ, Brodrick PG, Asner GP, Boyd DS. Active recovery accelerates the carbon recovery of human-modified tropical forests[J]. Science, 2020, 369(6505):838-841.

    [10]

    Schall P, Schulze ED, Fischer M, Ayasse M, Ammer C. Relations between forest management, stand structure and productivity across different types of Central European forests[J]. Basic Appl Ecol, 2018, 32:39-52.

    [11]

    Batterman S, Hedin L, van Breugel M, Ransijn J, Craven DJ, et al. Key role of symbiotic dinitrogen fixation in tropical forest secondary succession[J]. Nature, 2013, 502(7470):224-227.

    [12]

    Levy-Varon JH, Batterman SA, Medvigy D, Xu X, Hall JS, et al. Tropical carbon sink accelerated by symbiotic dinitrogen fixation[J].Nat Commun, 2019, 10(5637):1-8.

    [13]

    Steege T, Pitman NCA, Phillips OL, Chave J, Sabatier D, et al. Continental-scale patterns of canopy tree composition and function across Amazonia[J]. Nature, 2006, 443(7110):444-447.

    [14]

    Qie L, Lewis SL, Sullivan MJP, Lopez-Gonzalez G, Pic-kavance GC, et al. Long-term carbon sink in Borneo's forests halted by drought and vulnerable to edge effects[J].Nat Commun, 2017, 8(1966):1-11.

    [15] 周璋, 林明献, 李意德, 陈德祥, 骆土寿, 许涵. 海南岛尖峰岭林区近50年的热量因子变化特征[J]. 生态环境学报, 2015, 24(4):575-582.

    Zhou Z, Lin MX, Li YD, Chen DX, Luo TS, Xu H. Change characteristics of the heat factors in tropical forests in Jianfengling, Hainan Island during the past 50 years[J]. Ecology and Environmnet, 2015, 24(4):575-582.

    [16] 李意德, 许涵, 陈德祥, 骆土寿, 莫锦华, 等. 从植物种群间联结性探讨生态种组与功能群划分——以尖峰岭热带低地雨林乔木层数据为例[J]. 林业科学, 2007, 43(4):9-16.

    Li YD, Xu H, Chen DX, Luo TS, Mo JH, et al. Discussing on the ecological species groups and functional groups division based on the interspecific association:a case study on the arbor layer data in tropical lowland rain forest of Jianfenling, Hainan Island, China[J]. Scientia Silvae Sinicae, 2007, 43(4):9-16.

    [17] 陈德祥, 李意德, Liu HP, 许涵, 肖文发, 等. 尖峰岭热带山地雨林生物量及碳库动态[J]. 中国科学:生命科学, 2010, 40(7):596-609.
    [18] 邵晓莉, 程毅康, 王茜茜, 王旭, 巫勇, 等. 海南岛热带云雾林地上生物量分布规律[J]. 生态学杂志, 2018, 37(9):2566-2572.

    Shao XL, Cheng YK, Wang QQ, Wang X, Wu Y, et al. Distribution patterns of aboveground biomass of tropical cloud forests in Hainan Island[J].Chinese Journal of Ecology, 2018, 37(9):2566-2572.

    [19] 刘万德, 臧润国, 丁易. 海南岛霸王岭两种典型热带季雨林群落特征[J]. 生态学报, 2009, 29(7):3465-3476.

    Liu WD, Zang RG, Ding Y. Community features of two types of typical tropical monsoon forests in Bawangling Nature Reserve, Hainan Island[J]. Acta Ecologica Sinica, 2009, 29(7):3465-3476.

    [20] 李意德. 海南岛热带山地雨林林分生物量估测方法比较分析[J]. 生态学报, 1993, 13(4):313-320.

    Li YD. Comparative analysis of biomass estimation me-thods of tropical high-altitude stands in Hainan Island[J]. Acta Ecologica Sinica, 1993, 13(4):313-320.

    [21] 蒋有绪, 卢俊培. 中国海南岛尖峰岭热带林生态系统[M]. 北京:科学出版社, 1991.
    [22]

    Guariguata MR, Ostertag R. Neotropical secondary forest succession:changes in structural and functional characteristics[J]. For Ecol Manag, 2001, 148(1-3):185-206.

    [23]

    Chazdon RL, Letcher SG, van Breugel M, Martínez-Ramos M, Bongers F, et al. Finegan B. Rates of change in tree communities of secondary Neotropical forests following major disturbances[J]. Phil Tran R Soc B, 2007, 362(1478):273-289.

    [24]

    Marín-Spiotta E, Silver WL, Ostertag R. Long-term patterns in tropical reforestation:plant community composition and aboveground biomass accumulation[J]. Ecol Appl, 2007, 17(3):828-839.

    [25] 孙儒泳, 李庆芬, 牛翠娟, 娄安如. 基础生态学[M]. 北京:高等教育出版社, 2002:144.
    [26]

    Chapin FS, Matson PA, Vitousek PM. Principles of terrestrial ecosystem ecology[M]//The Ecosystem Concept. Germany:Springer, 2012:10.

    [27]

    Lutz JA, Furniss TJ, Johnson DJ, Davies SJ, Allen D, et al. Global importance of large-diameter trees[J]. Glob Ecol Biogeogr, 2018, 27:849-864.

    [28]

    Paquette A, Messier C. The effect of biodiversity on tree productivity:from temperate to boreal forests[J]. Glob Ecol Biogeogr, 2011, 20(1):170-180.

    [29]

    Clark DB, Clark DA. Abundance, growth and mortality of very large trees in neotropical lowland rain forest[J]. For Ecol Manage, 1996, 80(2):235-244.

    [30]

    Kirby KR, Potvin C. Variation in carbon storage among tree species:implications for the management of a small-scale carbon sink project[J]. For Ecol Manag, 2007, 246(2):208-221.

    [31]

    Stephenson NL, Das AJ, Condit R, Russo SE, Baker PJ,et al. Rate of tree carbon accumulation increases conti-nuously with tree size[J]. Nature, 2014, 507(7490):90-93.

    [32]

    Finegan B, Pena-Claros M, De Oliveira A, Ascarrunz N, Bret-Harte MS,et al. Does functional trait diversity predict above-ground biomass and productivity of tropical forests? Testing three alternative hypotheses[J]. J Ecol, 2015, 103(1):191-201.

  • 期刊类型引用(4)

    1. 刘世荣,王晖,李海奎,余振,栾军伟. 碳中和目标下中国森林碳储量、碳汇变化预估与潜力提升途径. 林业科学. 2024(04): 157-172 . 百度学术
    2. 曹欣媛,袁丛军,王浩东,陈梦,李君一,单绍朋,姜克,张家才. 乌蒙山不同龄组华山松林乔木层碳密度及固碳释氧能力. 贵州林业科技. 2023(01): 32-38+31 . 百度学术
    3. 李浩,宋玉林. 广州大封门林场次生林的物种多样性及经营启示. 陆地生态系统与保护学报. 2023(01): 88-95 . 百度学术
    4. 向钦,郭秋菊,艾训儒,姚兰,吴举扬,周云,薛卫星. 湖北木林子自然保护区天然林不同恢复阶段林分结构特征. 东北林业大学学报. 2023(11): 21-26+44 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  333
  • HTML全文浏览量:  4
  • PDF下载量:  202
  • 被引次数: 7
出版历程
  • 收稿日期:  2021-07-25
  • 修回日期:  2022-01-12
  • 网络出版日期:  2022-10-31
  • 发布日期:  2022-04-27

目录

    /

    返回文章
    返回