Growth response of two annual herbs to karst soil depth and water supply
-
摘要: 以一年生草本苍耳(Xanthium sibiricum Patrin ex Widder)和鬼针草(Bidens pilosa L.)为材料,模拟喀斯特地区不同土壤厚度以及不同水分处理,研究了两者的形态及生物量积累与分配特征。结果显示:资源减少(供水、土壤厚度及供水+土壤厚度)3种处理均抑制了植物的生长,植物生物量积累显著减少,对根和叶的投资比均未下降,而对茎的投资比显著下降;供水量减少对两者的根冠比、根长及比叶面积均无显著影响,而在土壤厚度下降及供水量与土壤厚度同时下降时,根冠比、根长与比叶面积均显著增加。研究结果表明,土壤厚度降低对2种草本植物的负面影响大于供水降低的影响。资源轻度降低时,植物以牺牲茎投资为代价保持对根和叶的稳定投资,从而保证对水分的吸收和光合合成;资源严重降低时,植物通过增加比根长等地下系统的投资以对抗地下环境压力的加剧。Abstract: The morphology, biomass accumulation, and distribution characteristics of Xanthium sibiricum Patrin ex Widder and Bidens pilosa L. were studied under simulated karst habitats with different soil depths and water availability. Results showed that decreased resources (i.e., water supply, soil depth, and water supply + soil depth) inhibited plant growth. The biomass accumulation and stem investment ratio of both plants decreased significantly. The decrease in water supply had no significant effect on the root-shoot ratio, root length, or specific leaf area of the species, whereas the root-shoot ratio, root length, and specific leaf area of both species increased significantly with the decrease in soil depth and water supply + soil depth. Results also showed that the inhibition effect of reduced soil depth on plant growth was greater than that of reduced water supply. When resources were slightly reduced, the root and leaf investment ratios were stable at the expense of stem investment to ensure water absorption and photosynthesis. When resources were severely reduced, plants countered the increased pressure of the underground environment by investing in underground systems, e.g., increasing specific root length.
-
Keywords:
- Karst drought /
- Shallow soil /
- Plant functional traits /
- Trade off
-
-
[1] Gratani L. Plant phenotypic plasticity in response to environmental factors[J]. Adv Bot, 2014:208747.
[2] 郭丰辉, 侯向阳, 丁勇, 李西良, 武自念, 等. 羊草形态及生物量分配可塑性对土壤供磷能力的响应研究[J]. 草业学报, 2016, 25(12):53-62. Guo FH, Hou XY, Ding Y, Li XL, Wu ZN, et al. Plasticity of plant morphology and biomass allocation of Leymus chinensis under different phosphorus conditions[J]. Acta Prataculturae Sinica, 2016, 25(12):53-62.
[3] 王君, 及利, 张忠辉, 王芳, 李焱龙, 等. 不同土壤基质下水分胁迫对蒙古栎幼苗表型可塑性的影响[J]. 生态学杂志, 2019, 38(1):51-59. Wang J, Ji L, Zhang ZH, Wang F, Li YL, et al. Effects of water stress on phenotypic plasticity of Quercus mongolica seedlings grown in two soil substrates[J]. Chinese Journal of Ecology, 2019, 38(1):51-59.
[4] 王宁, 袁美丽, 陈浩, 李真真. 不同光照条件和土壤含水量对节节麦表型可塑性及化感作用的影响[J]. 植物资源与环境学报, 2019, 28(1):34-42. Wang N, Yuan ML, Chen H, Li ZZ. Effects of different light conditions and soil water contents on phenotypic plasticity and allelopathic effect of Aegilops tauschii[J]. Journal of Plant Resources and Environment, 2019, 28(1):34-42.
[5] 王琪, 容丽. 环境影响下植物根系的生长分布特征研究进展[J]. 贵阳学院学报(自然科学版), 2015, 10(4):61-66. Wang Q, Rong L. Progress under the environmental impact about distribution and growth of plant roots[J]. Journal of Guiyang College(Natural Science), 2015, 10(4):61-66.
[6] Kleyer M, Trinorra J, Cebrian-piqueras MA, Trenkamp A, Flojgaard C, et al. Trait correlation network analysis identifies biomass allocation traits and stem specific length as hub traits in herbaceous perennial plants[J]. J Ecol, 2019, 107(2):829-842.
[7] 潘玉梅, 唐赛春, 韦春强, 李象钦. 不同光照和水分条件下鬼针草属入侵种与本地种生长、光合特征及表型可塑性的比较[J]. 生物多样性, 2017, 25(12):1257-1266. Pan YM, Tang SC, Wei CQ, Li XQ. Comparison of growth, photosynthesis and phenotypic plasticity between invasive and native Bidens species under different light and water conditions[J]. Biodiversity Science, 2017, 25(12):1257-1266.
[8] 万军. 贵州省喀斯特地区土地退化与生态重建研究进展[J].地球科学进展, 2003, 18(3):447-453. Wang J. Land degradation and ecological rehabilitation in karst areas of Guizhou province, southweastern China[J]. Advance in Earth Sciences, 2003, 18(3):447-453.
[9] 陈洪松, 王克林. 西南喀斯特山区土壤水分研究[J]. 农业现代化研究, 2008, 29(6):734-738. Chen HS, Wang KL. Soil water research in karst mountain areas of southwest China[J]. Research of Agricultural Modernization, 2008, 29(6):734-738.
[10] 安吉平, 王济, 蔡雄飞, 段志斌, 颜蒙蒙. 西南喀斯特二元结构下土壤流失研究进展[J]. 湖北农业科学, 2017, 56(9):1605-1610. An JP, Wang J, Cai XF, Duan ZB, Yan MM. Research progress of soil Loss in karst areas under the dual structure of southwest China[J]. Hubei Agricultural Sciences, 2017, 56(9):1605-1610.
[11] 周运超, 王世杰, 卢红梅. 喀斯特石漠化过程中土壤的空间分布[J]. 地球与环境, 2010, 38(1):1-7. Zhou YC, Wang SJ, Lu HM. Spatial distribution of soils during the process of karst rocky desertification[J]. Earth and Environment, 2010, 38(1):1-7.
[12] 赵志猛, 沈有信, 朱习爱. 西南岩溶地区土壤水分研究进展[J]. 湖北农业科学, 2017, 56(19):3603-3609. Zhao ZM, Shen YX, Zhu XA. Research progress of soil moisture in karst areas of southwest China[J]. Hubei Agricultural Sciences, 2017, 56(19):3603-3609.
[13] 李周, 赵雅洁, 宋海燕, 张静, 陶建平, 刘锦春. 喀斯特土层厚度异质性对草地群落结构和优势种生长的影响[J]. 草业科学, 2017, 34(10):2023-2032. Li Z, Zhao YJ, Song HY, Zhang YJ, Tao JP, Liu JC. The effect of soil thickness heterogeneity on grassland plant community structure and growth of dominant species in karst area[J]. Pratacultural Science, 2017, 34(10):2023-2032.
[14] 王昊, 姜超, 王鹤松, 孙建新. 中国西南部区域雨季极端降水指数时空变化特征[J]. 中国农业气象, 2019, 40(1):1-14. Wang H, Jiang C, Wang HS, Sun JX. Spatial and temporal variation of extreme precipitation indices in southwes-tern China in the rainy season[J]. Chinese Journal of Agrometeorology, 2019, 40(1):1-14.
[15] 贺晋云, 张明军, 王鹏, 王圣杰, 王兴梅. 近50年西南地区极端干旱气候变化特征[J]. 地理学报, 2011, 66(9):1179-1190. He JY, Zhang MJ, Wang P, Wang SJ, Wang XM. Climate characteristics of the extreme drought events in sou-thwest China during recent 50 years[J]. Acta Geographica Sinica, 2011, 66(9):1179-1190.
[16] 张琪, 李跃清. 近48年西南地区降水量和雨日的气候变化特征[J]. 高原气象, 2014, 33(2):372-383. Zhang Q, Li YQ. Climatic variation of rainfall and rain day in southwest China for last 48 years[J]. Plateau Meteoro-logy, 2014, 33(2):372-383.
[17] 王克林, 岳跃民, 陈洪松, 吴协保, 肖峻, 祁向坤, 等. 喀斯特石漠化综合治理及其区域恢复效应[J]. 生态学报, 2019, 39(20):7432-7440. Wang KL, Yue YM, Chen HS, Wu XB, Xiao J, Qi XK, et al. The comprehensive treatment of karst rocky desertification and its regional restoration effects[J]. Acta Ecologica Sinica, 2019, 39(20):7432-7440.
[18] 陈祖拥, 刘方, 王世杰, 刘元生, 通达, 朱健. 喀斯特山区植被退化过程中的土壤质量变化及评价[J]. 中国岩溶, 2016, 35(6):639-648. Chen ZY, Liu F, Wang SJ, Liu YS, Tong D, Zhu J. The evaluation of soil quality evolution in the process of vegetation degradation in the krast mountaion area[J]. Carsologica Sinica, 2016, 35(6):639-648.
[19] 李周, 赵雅洁, 宋海燕, 张静, 陶建平, 刘锦春. 不同水分处理下喀斯特土层厚度异质性对两种草本叶片解剖结构和光合特性的影响[J]. 生态学报, 2018, 38(2):721-732. Li Z, Zhao YJ, Song HY, Zhang J, Tao JP, Liu JC. Effects of karst soil thickness heterogeneity on the leaf anatomical structure and photosynthetic traits of two grasses under different water treatments[J]. Acta Ecologica Sinica, 2018, 38(2):721-732.
[20] 姚小兰, 周琳, 冯茂松, 郝建锋, 饶远林, 等. 干旱胁迫对不同基质网袋桢楠幼苗生长及生物量的影响[J]. 植物研究, 2018, 38(1):81-90. Yao XL, Zhou L, Feng MS, Hao JF, Rao YL, et al. Effects of drought stress on the growth and biomass of Phoebe zhennan' seedling in different substrates net container[J]. Bulletin of Botanical Research, 2018, 38(1):81-90.
[21] 张宇君, 尚以顺, 王普昶, 丁磊磊, 张文, 邹超. 干旱胁迫下保水剂对盘江白刺花幼苗生长和生理特性的影响[J]. 草业学报, 2020, 29(7):90-98. Zhang YJ, Shang YS, Wang PC, Ding LL, Zhang W, Zou C. Effect of super absorbent polymers on growth and physiological characteristics of Sophora davidii vs. Panjiang seedlings under drought stress[J]. Acta Prataculturae Sinica, 2020, 29(7):90-98.
[22] 殷东生, 魏晓慧. 干旱胁迫对风箱果幼苗生长、光合生理和抗氧化酶活性的影响[J]. 东北林业大学学报, 2019, 47(1):26-29. Yin DS, Wei XH. Influence of drought stress on growth, photosynthetic physiology and antioxidant enzyme activities of Physocarpus amurensis seedlings[J]. Journal of Northeast Forestry University, 2019, 47(1):26-29.
[23] Hess L, Hans DK. Effects of rooting volume and nutrient availability as an alternative explanation for root self/non-self discriminatio[J]. J Ecol, 2007, 95(2):241-251.
[24] 宋海燕, 张静, 李素慧, 梁千慧, 李若溪, 等. 基于容器分区处理探究黑麦草生长对喀斯特不同土壤生境和水分的响应[J]. 生态学报, 2019, 39(10):3557-3565. Song HY, Zhang J, Li SH, Liang QH, Li RX, et al. Growth response of Lolium perenne L. Under different soil habitats and water conditions based on container partition in a karst area[J]. Acta Ecologica Sinica, 2019, 39(10):3557-3565.
[25] 种培芳, 贾向阳, 田艳丽, 陆文涛. 荒漠植物红砂地上和地下生物量分配关系对大气CO2浓度升高及降水量变化的响应[J]. 草地学报, 2019, 27(6):1537-1544. Zhong PF, Jia XY, Lian YL, Lu WT. Effect of elevated CO2 and precipitation regimes on allocation patterns of above-and belowground biomass of desert shrub Reaumuria soongorica[J]. Acta Agrestia Sinica, 2019, 27(6):1537-1544.
[26] 王九峦, 马玉寿, 陈立同. 青藏高原三种优势植物生物量分配的变化规律[J].广西植物, 2017, 37(6):768-775. Wang JL, Ma YS, Chen LT. Changes in biomass allocation to leaves, stems and roots of three dominant alpine species from the Tibetan Plateau[J]. Guihaia, 2017, 37(6):768-775.
[27] 李秉钧, 颜耀, 吴文景, 吴鹏飞, 邹显花, 马祥庆. 环境因子对植物根系及其构型的影响研究进展[J]. 亚热带水土保持, 2019, 31(3):41-45. Li BJ, Yan Y, Wu WJ, Wu PF, Zou XH, Ma XQ. Research progress on the effects of environmental factors on plant roots and their configurations[J]. Subtropical Soil and Water Conservation, 2019, 31(3):41-45.
[28] 范瑞瑞. 武夷山59种木本植物树皮、茎干、叶片功能性状特征及其关联研究[D]. 福州:福建师范大学, 2018. [29] 文冬菊. 土壤养分状况对蜀葵营养生长和生殖生长的影响[D]. 成都:四川农业大学, 2015. [30] Trillmich F, Geissler E, Guenther A. Senescence and costs of reproduction in the life history of a small precocial species[J]. Ecol Evol, 2019, 9(12):7069-7079.
[31] 陈哲. 高寒草地不同生境、干扰下植物资源资源分配与形态可塑性[D]. 西宁:中国科学院西北高原生物研究所, 2013. [32] Blackman CJ, Brodribb TJ, Jordan GJ. Leaf hydraulic vulnerability influences species bioclimatic limits in a diverse group of woody angiosperms[J]. Oecologia, 2012, 168(1):1-10.
[33] 朱铁霞, 高阳, 高凯, 李志华. 干旱胁迫下菊芋各器官生物量及物质分配规律研究[J]. 生态学报, 2019, 39(21):1-6. Zhu TX, Gao Y, Gao K, Li ZH. Organ biomass and resource allocation in response to drought stress in Jerusalem artichoke[J]. Acta Ecologica Sinica, 2019, 39(21):1-6.
[34] Aroca R. Plant Responses to Drought Stress:From Morphological to Molecular Features[M]. Dordrecht:Springer-Verlag, 2012.
[35] 王振南, 尤菲菲, 杨梅, 段兵红, 陆姣云, 杨惠敏. 陇东苜蓿叶功能性状和生物量分配的时间动态[J]. 中国草地学报, 2016, 38(2):41-46. Wang ZN, You FF, Yang M, Duan BH, Lu JY, Yang HM. Temporal dynamics of leaf functional traits and biomass allocation in alfalfa[J]. Chinese Journal of Grassland, 2016, 38(2):41-46.
[36] 成向荣, 邢文黎, 苑海静, 熊静, 虞木奎. 披针叶茴香对变化光环境的表型可塑性[J]. 生态学报, 2019, 39(6):1936-1944. Cheng XR, Xing WL, Yuan HJ, Xiong J, Yu MK. Phenotypic plasticity of Illicium lanceolatum in response to varied light environments[J]. Acta Ecologica Sinica, 2019, 39(6):1936-1944.
[37] King DA. Allocation of above-ground growth is related to light in temperate deciduous saplings[J]. Funct Ecol, 2003, 17(4):482-488.
[38] 杨贵羽, 罗远培, 李保国, 刘晓英. 不同土壤水分处理对冬小麦根冠生长的影响[J]. 干旱地区农业研究, 2003, 21(3):104-109. Yang GY, Luo YP, Li BG, Liu XY. Effect of different soil water conditions on growth of root and shoot of winter wheat[J]. Agricultural Research in the Arid Areas, 2003, 21(3):104-109.
[39] 任昱, 卢琦, 吴波, 刘明虎. 不同模拟增雨下白刺比叶面积和叶干物质含量的比较[J]. 生态学报, 2015, 35(14):4708-4715. Ren Y, Lu Q, Wu B, Liu MH. Specific leaf area and leaf dry matter content of Nitraria tangutorum in the artificially simulated precipitation[J]. Acta Ecologica Sinica, 2015, 35(14):4708-4715.
[40] 韦兰英, 上官周平. 黄土高原白羊草、沙棘和辽东栎细根比根长特性[J]. 生态学报, 2006, 26(12):4165-4170. Wei LY, Shangguang ZP. Specific root length characteristics of three plant species, Bothriochloa ischaemum, Hippophae rhamnoidess and Quercus liaotungensis in the Loess Plateau[J]. Acta Ecologica Sinica, 2006, 26(12):4165-4170.
[41] Jiang M, Lin Y, Chan T, Yao Y, Liu D. Geologic factors leadingly drawing the macroecological pattern of rocky desertification in southwest China[J]. Sci Rep, 2020, 10(1):1440.
-
期刊类型引用(3)
1. 霍娜,赵迎雪,杨新兵,刘小宽,李新月. 土水肥耦合下五叶地锦光合日变化特征. 林业科技. 2024(05): 11-18 . 百度学术
2. 韩立鹤,尤勇刚,陆雅佩,董茜,谭格非,赵留辉. 模拟弃渣场不同重构土壤类型对高羊茅生长的影响. 西部林业科学. 2023(04): 90-100 . 百度学术
3. 张琦,吕广超,田迅. 4种生境下长刺蒺藜草不同器官生物量分配特征. 植物检疫. 2022(04): 33-41 . 百度学术
其他类型引用(4)
计量
- 文章访问数: 391
- HTML全文浏览量: 1
- PDF下载量: 419
- 被引次数: 7