Impacts of human activities and environmental factors on potential distribution of Swertia przewalskii Pissjauk., an endemic plant in Qing-Tibetan Plateau, using MaxEnt
-
摘要: 以青藏高原特有植物祁连獐牙菜(Swertia przewalskii Pissjauk.)为材料,基于该物种18个种群分布点及8个生物气候变量、海拔变量以及人类活动强度变量,运用最大熵模型(MaxEnt)和ArcGIS技术分别构建当前气候情景下及人类活动影响下祁连獐牙菜的适宜生境预测模型,研究人类活动及自然环境变量对祁连獐牙菜空间分布的影响。结果显示,人类活动影响下的训练集和测试集的AUC值均小于无人类活动干扰的AUC值,人类活动与祁连獐牙菜分布呈负相关。限制祁连獐牙菜分布的主要变量为海拔、等温性、人类活动足迹指数及平均温度日较差。当前气候情景下祁连獐牙菜的最适宜生境占祁连山国家公园青海片区总面积的36.6%,有利于该物种的保护和恢复,而位于门源县和祁连县保护区内一般控制区的潜在生境受到人为干扰的可能性较大,应加强关注和保护。Abstract: In this paper, the distribution of potentially suitable habitat of Swertia przewalskii Pissjauk., an endemic and endangered plant in the Qing-Tibetan Plateau, was studied to provide a scientific basis for effective conservation. This study was based on 18 occurrence records and eight environmental variables, including human activity, bioclimate, and altitude. We used the maximum entropy model and ArcGIS spatial analysis to construct a suitable habitat prediction model for S. przewalskii under the influence of modern climate scenarios and human activities and analyzed the influences of human activities and natural environmental factors, respectively. Results showed that the AUC of the test set under human activity interference was lower than that under no human activity interference. Human activities exerted negative impact on the potential distribution of S. przewalskii. Altitude, isothermality, human footprint index, and mean diurnal range were the main environmental factors influencing the distribution of S. przewalskii. At present, the most suitable habitat included 36.6% of the Qilianshan National Park area (Qinghai), which should benefit species conservation. However, the potential habitat in the utilization zones of the Qilian and Menyuan counties may be disturbed by human activities. We suggest policy makers focus greater attention on these utilization zones and increase conservation efforts.
-
-
[1] Naeem SR, Chazdon J, Duffy C, Prager WB. Biodiversity and human well-being:An essential link for sustainable development[J]. Proc Royal Soc B, 2016, 283:2016-2091.
[2] Xu WB, Svenning JC, Chen GK, Zhang MG, Huang JH, Chen B, Ordonez A, Ma KP. Human activities have opposing effects on distributions of narrow-ranged and widespread plant species in China[J]. Proc Natl Acad Sci India Sect B Biol Sci, 2019, 116(52):266-274.
[3] Liu JZ, Chen ZD, Lu AM. A preliminary analysis of the phylogeny of the Swertiinae (Gentianaceae) based on ITS data[J]. Isr J Plant Sci, 2001, 49(4):301-308.
[4] 中国科学院西北高原生物研究所青海植物志编辑委员会. 青海植物志[M]. 西宁:青海人民出版社, 1997:91-91. [5] 刘黄刚, 张铁军, 王莉丽, 马琳, 张丽娟. 獐牙菜属药用植物亲缘关系及其资源评价[J]. 2011,中草药, 42(8):1646-1650. Liu HG, Zhang TJ, Wang LL, Ma L, Zhang LJ. Genetic relationship and resources evaluation of medicinal plants in Swertia L.[J]. Chinese Herbal Medicine, 2011, 42(8):1646-1650.
[6] 范叔清, 周松, 卢志强, 张喜民. 藏茵陈化学成分和药理作用研究进展[J]. 现代中西医结合杂志, 2012, 21(2):227-228. [7] Zhang DF, Chen SY, Zhang DJ, Gao QB. Patterns of genetic variation in Swertia przewalskii, an endangered endemic species of the Qinghai-Tibet Plateau[J]. Biochem Genet, 2007, 45(1):33-50.
[8] IUCN Standards and Petitions Subcommittee. Guidelines for Using the IUCN Red List Categories and Criteria:Version 8.1[R/OL]. (2010-03). http://intranet.iucn.org/webfiles/doc/SSC/RedList/RedListGuidelines.pdf.
[9] Phillips SJ, Dudík M. Modeling of species distributions with MaxEnt:new extensions and a comprehensive eva-luation[J]. Ecography, 2008, 31(2):161-175.
[10] 崔绍朋, 罗晓, 李春旺, 胡慧建, 蒋志刚. 基于MaxEnt模型预测白唇鹿的潜在分布区[J]. 生物多样性, 2018, 26(2):171-176. Cui SP, Luo X, Li CW, Hu HJ, Jiang ZG. Predicting the potential distribution of white-lipped deer using the MaxEnt model[J]. Biodiversity Science, 2018, 26(2):171-176.
[11] 段义忠, 鱼慧, 王海涛, 杜忠毓. 孑遗濒危植物四合木(Tetraena mongolica)的地理分布与潜在适生区预测[J]. 植物科学学报, 2019, 37(3):337-347. Duan YZ, Yu H, Wang HT, Du ZY. Geographical distribution and prediction of potentially suitable regions of endangered relict plant Tetraena mongolica[J]. Plant Science Journal, 2019, 37(3):337-347.
[12] 宁瑶, 雷金睿, 宋希强, 韩淑梅, 钟云芳. 石灰岩特有植物海南凤仙花潜在适宜生境分布模拟[J]. 植物生态学报, 2018, 42(9):946-954. Ning Y, Lei JR, Song XQ, Han SM, Zhong YF. Modeling the potential suitable habitat of Impatiens hainanensis, a limestone-endemic plant[J]. Chinese Journal of Plant Ecology, 2018, 42(9):946-954.
[13] 武晓宇, 董世魁, 刘世梁, 刘全儒, 韩雨晖, 张晓蕾, 等. 基于MaxEnt模型的三江源区草地濒危保护植物热点区识别[J]. 生物多样性, 2018, 26(2):138-148. Wu XY, Dong SK, Liu SL, Liu QR, Han YH, Zhao XL, et al. Identifying priority areas for grassland endangered plant species in the Sanjiangyuan Nature Reserve based on the MaxEnt model[J]. Biodiversity Science, 2018, 26(2):138-148.
[14] 塞依丁·海米提, 努尔巴依·阿布都沙力克, 阿尔曼·解思斯, 邵华, 维尼拉·伊利哈尔. 人类活动对外来入侵植物黄花刺茄在新疆潜在分布的影响[J]. 生态学报, 2019, 39(2):629-636. Sayit Hamit, Nurbay Abdushalih, Arman Jiesisi, Shao H, Vinira Yilihar. Impact of human activities on potential distribution of Solanum rostratum Dunal in Xinjiang[J]. Acta Ecologica Sinica, 2019, 39(2):629-636.
[15] 应凌霄, 刘晔, 陈绍田, 沈泽昊. 气候变化情景下基于最大熵模型的中国西南地区清香木潜在分布格局模拟[J]. 生物多样性, 2016, 24(4):453-461. Ying LX, Liu Y, Chen ST, Shen ZH. Simulation of the potential range of Pistacia weinmannifolia in southwest China with climate change based on the maximum-entropy (MaxEnt) model[J]. Biodiversity Science, 2016, 24(4):453-461.
[16] Fick SE, Hijmans RJ. WorldClim 2:new 1 km spatial resolution climate surfaces for global land areas[J]. Int J Climatol, 2017, 37(12):4302-4315.
[17] Venter O, Sanderson EW, Magrach A, Allan JR, Beher J, Jones KR, et al. Last of the wild project, Version 3(LWP-3):2009 human footprint, 2018 release[R/OL]. Palisades, NY:NASA Socioeconomic Data and Applications Center (SEDAC).https://doi.org/10.7927/H46TOJQ4.
[18] Jueterbock A, Smolina I, Coyer JA, Hoarau G. The fate of the Arctic seaweed Fucus distichus under climate change:an ecological niche modeling approach[J]. Ecol Evol, 2016, 6(6):1712-1724.
[19] Phillips SJ, Anderson RP, Schapire RE. Maximum entropy modeling of species geographic distributions[J]. Ecol Model, 2006, 190(3-4):231-259.
[20] 朱耿平, 原雪姣, 范靖宇, 王梦琳. MaxEnt模型参数设置对其所模拟物种地理分布和生态位的影响——以茶翅蝽为例[J]. 生物安全学报, 2018, 27(2):118-123. Zhu GP, Yuan XJ, Fan JY, Wang ML. Effects of model parameters in MaxEnt modeling of ecological niche and geographic distribution:case study of the brown mar-morated stink bug, Halyomorpha haly[J]. Journal of Biosafty, 2018, 27(2):118-123.
[21] 吴征镒, 孙航, 周浙昆, 李德铢, 彭华. 中国种子植物区系地理[M].北京:科学出版社, 2010:21-22. [22] 李永格, 李宗省, 冯起, 卫伟, 杨静, 吕越敏, 等. 基于生态红线划定的祁连山生态保护性开发研究[J]. 生态学报, 2019, 39(7):2343-2352. Li YG, Li ZS, Feng Q, Wei W, Yang J, Lu YM, et al. Research on the development of the ecological protection of the Qilian Mountains based on ecological redline[J]. Acta Ecologica Sinica, 2019, 39(7):2343-2352.
[23] George W Cox. 外来种与进化[M]. 李博, 译. 上海:复旦大学出版社, 2010:115-115. [24] Bijlsma R, Loeschcke V. Genetic erosion impedes adaptive responses to stressful environments[J]. Evol Appl, 2012, 5(2):117-129.
[25] 段元文, 刘建全. 青藏高原特有植物祁连獐牙菜(龙胆科)的花综合征与虫媒传粉[J]. 植物分类学报, 2003, 41(5):465-474. Duan YW, Liu JQ. Floral syndrome and insect pollination of the Qinghai-Tibet Plateau endemic Swertia przewalskii (Gentianaceae)[J]. Acta Phytotaxonomica Sinica, 2003, 41(5):465-474.
[26] Hermansen TD, Minchinton TE, Ayre DJ. Habitat fragmentation leads to reduced pollinator visitation, fruit production and recruitment in urban mangrove forests[J]. Oecologia, 2017, 185(2):221-231.
[27] Honnay OK, Verheyen J, Butaye H, Jacquemyn B, Bossuyt, Hermy M. Possible effects of habitat fragmentation and climate change on the range of forest plant species[J]. Ecol Lett, 2002, 5(4):525-530.
[28] G kbulak F. Effect of American bison (Bison bison L.) on the recovery and germinability of seeds of range forage species[J]. Grass Forage Sci, 2002, 57(4):395-400.
[29] 张静, 陈先江, 侯扶江. 家畜排泄物对牧草种子传播和萌发的作用[J]. 草业科学, 2017, 34(10):2070-2079. Zhang J, Chen XJ, Hou FJ. Effects of livestock excreta on herbage seed dispersal and germination[J]. Pratacultural Science, 2017, 34(10):2070-2079.
[30] 中华人民共和国国务院. 中华人民共和国自然保护区条例[DB/OL].(2005)[2020-04-21].http://www.gov.cn/ziliao/flfg/2005-09/27/content_70636.htm[BFY]. [31] 祁连山国家公园管理局.青海祁连山国家公园简介[DB/OL]. (2018)[2020-04-21]. http://www.forestry.gov.cn/qls/index.html[BFY]. [32] 李国庆, 刘长成, 刘玉国, 杨军, 张新时, 郭柯. 物种分布模型理论研究进展[J]. 生态学报, 2013, 33(16):4827-4835. Li GQ, Liu CC, Liu YG, Yang J, Zhang XS. Advances in theoretical issues of species distribution models[J]. Acta Ecologica Sinica, 2013, 33(16):4827-4835.
[33] 赵成章, 高福元, 石福习, 任珩, 盛亚萍. 高寒退化草地甘肃臭草种群分布格局及其对土壤水分的响应[J]. 生态学报, 2011, 31(22):6688-6695. Zhao CZ, Gao FY, Shi FX, Ren H, Sheng YP. Melica przewalskyi population spatial pattern and response to soil moisture in degraded alpine grassland[J]. Acta Ecologica Sinica, 2011, 31(22):6688-6695.
-
期刊类型引用(11)
1. 曾伟英,王德智,叶琛,龚宇,王昱熙,张全发. 基于优化的MaxEnt模型对全国巨柏潜在分布的预测. 植物科学学报. 2025(01): 52-62 . 本站查看
2. 马月伟,陈玉美,张盛蓝,桂雅丽,陈艳梅. 夹金山脉大熊猫栖息地生境质量与人类活动强度耦合协调研究. 生态环境学报. 2025(02): 197-208 . 百度学术
3. 张迪,薛明珂,刘明,尚晓峰,张旭彤,刘金娜. 基于生态位模型的南、北五味子潜在适生区预测及其影响因子研究. 湖北农业科学. 2024(01): 116-121 . 百度学术
4. 宋晴,付鸿莉,王铁梅,宿逸然,梁留喜,通拉嘎,胥健,董昊野,邰塔拉. 兴安盟草原灌丛植被潜在适生区分布模拟分析. 草地学报. 2024(02): 579-587 . 百度学术
5. 李小莉,苏旭,王东,刘玉萍,陈金元,孙成林. 气候变化背景下青藏高原特有种唐古特红景天的地理分布格局预测. 植物研究. 2024(02): 168-179 . 百度学术
6. 王鹏,田姗姗,宋盈盈,金正,张青玉,陶建平,罗唯学. 基于MaxEnt预测3种柃属植物在中国的潜在适生区. 西南大学学报(自然科学版). 2024(12): 84-99 . 百度学术
7. 何学高,刘欢,张婧,程炜,丁鹏,贾丰铭,李卿,刘超. 基于优化的MaxEnt模型预测青海省祁连圆柏潜在分布区. 北京林业大学学报. 2023(12): 19-31 . 百度学术
8. 王志威,胡优琼,黄安玲. 贵州省灵芝的生态种植适生区及关键生态因子研究. 河南农业科学. 2022(10): 61-73 . 百度学术
9. 何珮婷,刘丹媛,卢思言,何小钰,李桦,杨柳,林锦耀. 基于最大熵模型的深圳市内涝影响因素分析及内涝风险评估. 地理科学进展. 2022(10): 1868-1881 . 百度学术
10. 马小磊,刘瑞娟,曹倩,邢睿,陈世龙,高庆波. 青藏高原3种特有植物的核型报道. 生物学杂志. 2022(06): 73-76 . 百度学术
11. 陈凯扬,王博,陈晨,周国英. 祁连山特有濒危植物穴丝荠分布预测及其重要影响因子分析. 西北植物学报. 2022(11): 1954-1961 . 百度学术
其他类型引用(7)
计量
- 文章访问数: 881
- HTML全文浏览量: 27
- PDF下载量: 650
- 被引次数: 18