Simulating potential distribution of Afrocanthium (Rubiaceae) in Kenya based on MaxEnt and its application in the Flora of Kenya
-
摘要: 物种分布模型目前被广泛应用于生物学、生态学和保护生物学的各个领域。该文以肯尼亚茜草科河骨木属(Afrocanthium )为例,利用最大熵模型(MaxEnt)模拟植物在当前气候情景下的潜在分布,并将这些分布图利用于正在编写的《肯尼亚植物志》中。结果显示,基于足够的原始标本记录,模型能够很好地模拟出每种植物的潜在分布区域。相比传统和新一代植物志仅提供标本信息点或是粗略分布图,《肯尼亚植物志》预采用的潜在分布图,将为志书使用者提供更加全面、实用的信息。Abstract: Species distribution models are widely used in the fields of biology, ecology, and conservation biology. Taking Afrocanthium of Rubiaceae in Kenya as an example, this paper briefly introduces the potential distribution of plants under current climate scenarios using the maximum entropy model (MaxEnt), and the possible use of these distribution maps in the forthcoming Flora of Kenya. Results showed that the model well simulated the potential distribution areas of each species based on sufficient original sample records. Compared with traditional and next-generation Floras, which only provide sample information points or rough distribution maps, the potential distribution maps, which will be used in the upcoming Flora of Kenya, will provide more comprehensive and practical information.
-
Keywords:
- Species distribution models /
- Climate factors /
- MaxEnt /
- Flora of Kenya
-
-
[1] Kreft H, Sommer JH, Barthlott W. The significance of geographic range size for spatial diversity patterns in Neotro-pical palms[J]. Ecography, 2006, 29(1):21-30.
[2] Ricklefs RE. A comprehensive framework for global patterns in biodiversity[J]. Ecol Lett, 2010, 7(1):1-15.
[3] Kozak KH, Graham CH, Wiens JJ. Integrating GIS-based environmental data into evolutionary biology[J]. Trends Ecol Evol, 2008, 23(3):141-148.
[4] 夏尤普·玉苏甫, 买买提明·苏来曼, 维尼拉·伊利哈尔, 张忠心. 基于MaxEnt生态位模型预测对齿藓属(Didymodon)植物在新疆的潜在地理分布[J]. 植物科学学报, 2018, 36(4):541-553. Shuayib Yusup, Mamtimin Sulayman, Winira Ilghar, Zhang ZX. Prediction of potential distribution of Didymodon (Bryophyta, Pottiaceae) in Xinjiang based on the MaxEnt model[J]. Plant Science Journal, 2018, 36(4):541-553.
[5] Box EO. Factors determining distributions of tree species and plant functional types[J]. Plant Ecol, 1995, 121(1):101-116.
[6] Woodward FI. Climate and Plant Distribution[M]. Cambridge:Cambridge University Press, 1987.
[7] Elith J, Leathwick JR. Species distribution models:ecological explanation and prediction across space and time[J]. Annu Rev Ecol Evol S, 2009, 40:667-697.
[8] Khanum R, Mumtaz AS, Kumar S. Predicting impacts of climate change on medicinal asclepiads of Pakistan using Maxent modeling[J]. Acta Oecologica, 2013, 49:23-31.
[9] Kumar P. Assessment of impact of climate change on Rhododendrons in Sikkim Himalayas using Maxent modelling:limitations and challenges[J]. Biodivers Conserv, 2012, 21:1251-1266.
[10] 王娟, 倪健. 中国北方温带地区5种锦鸡儿植物的分布模拟[J]. 植物生态学报, 2009, 33(1):12-24. Wang J, Ni J. Modelling the distribution of five Caragana species in temperate northern China[J]. Chinese Journal of Plant Ecology, 2009, 33(1):12-24.
[11] Wan JZ, Wang CJ, Han SJ, Yu JH. Planning the priority protected areas of endangered orchid species in northeastern China[J]. Biodivers Conserv, 2014, 23(6):1395-1409.
[12] Ervin GN, Holly DC. Examining local transferability of predictive species distribution models for invasive plants:an example with cogongrass (Imperata cylindrica)[J]. Invas Plant Sci Mana, 2011, 4(4):390-401.
[13] 王娟, 倪健. 植物种分布的模拟研究进展[J]. 植物生态学报, 2006, 30(6):1040-1053. Wang J, Ni J. Review of modelling the distribution of plant species[J]. Chinese Journal of Plant Ecology, 2006, 30(6):1040-1053.
[14] Williams JN, Seo C, Thorne J, Nelson JK, Erwin S, et al. Using species distribution models to predict new occurrences for rare plants[J]. Divers Distrib, 2009, 15:565-576.
[15] 李国庆, 刘长成, 刘玉国, 杨军, 张新时, 郭柯. 物种分布模型理论研究进展[J]. 生态学报, 2013, 33(16):4827-4835. Li GQ, Liu CC, Liu YG, Yang J, Zhang XS, Guo K. Advances in theoretical issues of species distribution models[J]. Acta Ecologica Sinica, 2013, 33(16):4827-4835.
[16] Merow C, Smith MJ, Silander JA. A practical guide to Maxent for modeling specis' distributions:what it does, and why inputs and settings matter[J]. Ecography, 2013, 36(10):1058-1069.
[17] Kumar S, Stohlgren TJ. Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia[J]. J Ecol Nat Environ, 2009, 1(4):94-98.
[18] 雷军成, 徐海根. 基于MaxEnt的加拿大一枝黄花在中国的潜在分布区预测[J]. 生态与农村环境学报, 2010, 26(2):137-141. Lei JC, Xu HG. Maxent-based prediction of potential distribution of Solidago canadensis in China[J]. Journal of Ecology and Rural Environment, 2010, 26(2):137-141.
[19] 胡忠俊, 张镱锂, 于海彬. 基于MaxEnt模型和GIS的青藏高原紫花针茅物种分布格局模拟[J]. 应用生态学报, 2015, 26(2):505-511. Hu ZJ, Zhang YL, Yu HB. Simulation of Stipa purpurea distribution pattern on Tibetan Plateau based on MaxEnt model and GIS[J]. Chinese Journal of Applied Ecology, 2015, 26(2):505-511.
[20] Yang XQ, Kushwaha SPS, Saran S, Xu JC, Roy PS. MaxEnt modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills[J]. Ecol Eng, 2013, 51:83-87.
[21] 管毕财, 陈微, 刘想, 蔡奇英, 刘以珍, 葛刚. 四照花物种分布格局模拟及冰期避难所推测[J]. 西北植物学报, 2016, 36(12):2541-2547. Guan BC, Chen W, Liu X, Cai QY, Liu YZ, Ge G. Distribution pattern and glacial refugia of Cornus kousa subsp. chinensis based on MaxEnt model and GIS[J]. Acta Botanica Boreali-Occidentalia Sinica, 2016, 36(12):2541-2547.
[22] Deb CR, Jamir NS, Kikon ZP. Distribution prediction model of a rare orchid species (Vanda bicolor Griff.) using small sample size[J]. American Journal of Plant Sciences, 2017, 8:1388-1398.
[23] 王文采. 植物分类学的历史回顾与展望[J]. 生物学通报, 2008, 43(6):1-4. Wang WC. Historical perspective of plant taxonmy[J]. Bulletin of Biology, 2008, 43(6):1-4.
[24] 董洪进, 刘恩德, 彭华. 中国植物分类编目的过去、现在和将来[J]. 植物科学学报, 2011, 29(6):755-762. Dong HJ, Liu ED, Peng H. Plant cataloguing in China:past, present and future[J]. Plant Science Journal, 2011, 29(6):755-762.
[25] Zhou YD. Inventory and diversity of vascular plants in Mt. Kenya, East Africa[D]. Beijing:University of Chinese Academy of Sciences, 2017.
[26] 黄普华. 编研《中国植物志》的回顾与体会[J]. 植物科学学报, 2017, 35(3):465-468. Huang PH. The review and product of compiling Flora Reipublicae Popularis Sinicae[J]. Plant Science Journal, 2017, 35(3):465-468.
[27] 李德铢, 王雨华, 伊廷双, 王红, 高连明, 杨俊波. 新一代植物志:iFlora[J]. 植物分类与资源学报, 2012, 34(6):525-531. Li DZ,Wang YH,Yi TS, Wang H, Gao LM, Yang JB. The next-generation Flora:iFlora[J]. Plant Diversity and Resources, 2012, 34(6):525-531.
[28] 陆露, 王红, 李德铢. iFlora与植物志修订的若干思考:以杜鹃花科白珠树属为例[J]. 植物分类与资源学报, 2012, 34(6):562-584. Lu L, Wang H, Li DZ. Some considerations on data integration for the next-generation Flora (iFlora) and flora revision:a case study of Gaultheria (Ericaceae)[J]. Plant Diversity and Resources, 2012, 34(6):562-584.
[29] Chen YS. AsteraceaeⅡ Saussurea[M]//Hong DY, ed. Flora of Pan-Himalaya. Beijing:Science Press; Cambridge:Cambridge University Press, 2016.
[30] Beentje HJ. Kenya Trees, Shrubs and Lianas[M]. Nairobi:National Museums of Kenya, 1994.
[31] F. T. E. A. Flora of Tropical East Africa[M]. London:Kew Royal Botanic Garden, 1952-2012.
[32] Zhou YD, Liu B, Mbuni Y, Yan X, Mwachala G, et al. Vascular flora of Kenya, based on the Flora of Tropical East Africa[J]. PhytoKeys, 2017, 90:113-126.
[33] Lantz H, Bremer B. Phylogeny inferred from morphology and DNA data:characterizing well-supported groups in Vanguerieae (Rubiaceae)[J]. Bot J Linn Soc, 2004, 146:257-283.
[34] Gao JY. Guide to the world stattes:Kenya[M]. Beijing:Social Sciences Academic Press, 2004.
[35] 冯建孟. 中国种子植物物种多样性的大尺度分布格局及其气候解释[J]. 生物多样性, 2008, 16(5):470-476. Feng JM. Spatial patterns of species diversity of seed plants in China and their climatic explanation[J]. Biodiversity Science, 2008, 16(5):470-476.
[36] Mittermeier RA, Gil RR, Hoffman M, Pilgrim J, Brooks T, et al. Hotspots Revisited:Earth's Biologically Richest and Most Threatened Terrestrial Ecoregions[M]. Mexico City:Agrupacion Sierra Madre, 2004.
[37] Araújo MB, Anderson RP, Barbosa AM, Beale CM, Dormann CF, et al. Standards for distribution models in biodiversity assessments[J]. Sci Adv, 2019, 5:eaat4858.
[38] Trumbo DR, Burgett AA, Knouft JH. Testing climate-based species distribution models with recent field surveys of pond-breeding amphibians in eastern Missouri[J]. Can J Zool, 2011, 89(11):1074-1083.
[39] Kuria MW, Ngumi VW, Njenga PK, Wangai LN. MaxEnt modeling for predicting a suitable habitat for a threatened and endangered medicinal plant species Strychnos henningsii in Kenya[J]. International Journal of Innovative Research and Knowledge, 2017, 2(11):61-78.
-
期刊类型引用(1)
1. 谢聿源,李晨,赵宁宁,李文成,孙晶远,魏学红. 基于MaxEnt模型的西藏飞蝗在昌都市的适生区预测. 高原农业. 2023(03): 249-258 . 百度学术
其他类型引用(1)
计量
- 文章访问数: 560
- HTML全文浏览量: 0
- PDF下载量: 503
- 被引次数: 2