高级检索+

神农架大九湖亚高山泥炭湿地水汽通量特征及其与相关环境因子的关系

翁闻畅, 葛继稳, 谌佳伟, 李永福, 程腊梅, 张志麒

翁闻畅, 葛继稳, 谌佳伟, 李永福, 程腊梅, 张志麒. 神农架大九湖亚高山泥炭湿地水汽通量特征及其与相关环境因子的关系[J]. 植物科学学报, 2020, 38(4): 493-505. DOI: 10.11913/PSJ.2095-0837.2020.40493
引用本文: 翁闻畅, 葛继稳, 谌佳伟, 李永福, 程腊梅, 张志麒. 神农架大九湖亚高山泥炭湿地水汽通量特征及其与相关环境因子的关系[J]. 植物科学学报, 2020, 38(4): 493-505. DOI: 10.11913/PSJ.2095-0837.2020.40493
Weng Wen-Chang, Ge Ji-Wen, Chen Jia-Wei, Li Yong-Fu, Cheng La-Mei, Zhang Zhi-Qi. Water vapor flux characteristics and their relationship with environmental factors in the subalpine peat wetlands of Dajiuhu, Shennongjia[J]. Plant Science Journal, 2020, 38(4): 493-505. DOI: 10.11913/PSJ.2095-0837.2020.40493
Citation: Weng Wen-Chang, Ge Ji-Wen, Chen Jia-Wei, Li Yong-Fu, Cheng La-Mei, Zhang Zhi-Qi. Water vapor flux characteristics and their relationship with environmental factors in the subalpine peat wetlands of Dajiuhu, Shennongjia[J]. Plant Science Journal, 2020, 38(4): 493-505. DOI: 10.11913/PSJ.2095-0837.2020.40493

神农架大九湖亚高山泥炭湿地水汽通量特征及其与相关环境因子的关系

基金项目: 

国家自然科学基金资助项目(31971490)。

详细信息
    作者简介:

    翁闻畅(1994-),男,硕士研究生,研究方向为湿地生态学研究(E-mail:543541289@qq.com)。

    通讯作者:

    葛继稳,E-mail:gejiwen2002@aliyun.com

  • 中图分类号: Q948

Water vapor flux characteristics and their relationship with environmental factors in the subalpine peat wetlands of Dajiuhu, Shennongjia

Funds: 

This work was supported by a grant from the National Natural Science Foundation of China(31971490).

  • 摘要: 以神农架大九湖亚高山泥炭湿地为对象,采用涡度相关技术,通过采集湿地水汽通量的年际数据,并进行数据统计和分析,研究水汽通量特征及其与环境因子的关系。结果显示:(1)大九湖泥炭湿地全年蒸散量占降水量的58.59%,能够满足大九湖生态系统水汽循环的需要。(2)大九湖泥炭湿地的水汽通量全年各月份日均变化大多为正值,即释放水汽,表明该地区总体表现为水汽源;在季节尺度上,水汽通量最大值出现在夏季,夏季水汽通量日均变化幅度最大。(3)净辐射月均变化幅度较大,其中夏季净辐射最大,占全年的34.96%。各季节的净辐射与水汽通量均呈正相关,春季、夏季和秋季的拟合效果(R2)均超过0.7,夏季最高(0.8347),且高于其他同纬度6个地区。(4)除2018年1月外,各月份水汽通量与气温均呈显著正相关,特别是夏季最显著相关,这与夏季植物蒸腾和水分蒸发旺盛有关。(5)气温和净辐射对水汽通量的影响在各季节均显著,但各季节间有所差异。研究表明净辐射在大九湖泥炭湿地水汽循环中的作用大于气温对水汽通量的影响。
    Abstract: Using the eddy covariance technique, we collected interannual data on wetland water vapor flux and conducted data analysis to study the characteristics of water vapor flux and its relationship with environmental factors in the subalpine peat wetlands of Dajiuhu, Shennongjia. Results showed that:(1) Evapotranspiration accounted for 58.59% of precipitation, indicating that precipitation could meet the needs of water vapor circulation in Dajiuhu. (2) Annual diurnal variation of water vapor flux was mostly positive (release of water vapor), indicating that the peat ecosystem of Dajiuhu was the main source of water vapor. Seasonally, maximum diurnal variation appeared in summer, with the largest change range. (3) Average net radiation varied largely over the year and the maximum appeared in summer, accounting for 34.96% of total radiation over the whole year. There was a high correlation between water vapor flux and net radiation in every season. Correlation coefficients (R2) in spring and summer were greater than 0.7, with the maximum of 0.8347 appearing in summer, better than any other survey region at similar latitude. (4) There was a significant positive correlation between water vapor flux and air temperature each month, except January 2018, with the highest correlation in summer. This was mostly because both plant transpiration and surface evaporation were highly active in summer. (5) Air temperature and net radiation had significant effects on water vapor flux in every season, but correlation varied from season to season. These results showed that net radiation played a more important role in the water vapor cycle than air temperature in the subalpine peat wetlands of Dajiuhu, Shennongjia.
  • [1] 欧阳峰, 陆一新, 黄冬梅. 水污染造成的环境经济损失分析[J]. 安全与环境工程, 2006, 13(1):33-36.

    Ouyang F, Lu YX, Huang DM. Analysis of environmental economic loss due to water pollution[J]. Safety and Environmental Engineering, 2006, 13(1):33-36.

    [2]

    Baldocchi D, Falge E, Gu L, Olson R, Hollinger D, Running S, et al. FLUXNET:A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities[J]. Bulletin of the American Meteorological Society, 2001, 82(11):2415-2434.

    [3] 吴方涛, 曹生奎, 曹广超, 汉光昭, 林阳阳, 等. 青海湖2种高寒嵩草湿草甸湿地生态系统水热通量比较[J]. 水土保持学报, 2017, 31(5):176-182.

    Wu FT, Cao SK, Cao GC, Han GZ, Lin YY, et al. Comparative study on hydrothermal fluxes of two alpine Kobresia wet meadow wetland ecosystems in Qinghai Lake[J]. Journal of Soil and Water Conservation, 2017, 31(5):176-182.

    [4] 高升华, 汤玉喜, 唐洁, 唐学君, 田甜, 等. 滩地杨树人工林皆伐后蒸发散与产流变化[J]. 林业科学研究, 2017, 30(3):486-493.

    Gao SH, Tang YX, Tang J, Tang XJ, Tian T, et al. Variations of evapotranspiration and water yield in a post-clearcuttingr riparian poplar plantation[J]. Forest Research, 2017, 30(3):486-493.

    [5]

    Chatterjee D, Nayak AK, Vijayakumar S, Debnath M, Chatterjee S, et al. Water vapor flux in tropical lowland rice[J]. Environ Monit Assess, 2019, 191(9):550.

    [6] 王慧清, 付亚男, 包福祥, 孟雪峰. 内蒙古地区多年大气可降水量及其转化效率研究[J]. 高原气象, 2018, 37(3):786-795.

    Wang HQ, Fu YN, Bao FX, Meng XF. Study on atmospheric precipitable water and precipitation conversion efficiency of muti-year in Inner Mongolia[J]. Plateau Meteorology, 2018, 37(3):786-795.

    [7]

    Twine TE, Kustas WP, Norman JM, Cook DR, Houser PR, et al. Correcting eddy-covariance flux underestimates over a grassland[J]. Agr Forest Meteorol, 2000, 103(3):279-300.

    [8] 李小梅, 张秋良. 环境因子对兴安落叶松林生态系统CO2通量的影响[J]. 北京林业大学学报, 2015, 37(8):31-39.

    Li XM, Zhang QL. Impact of climate factors on CO2 flux characteristics in a Larix gmelinii forest ecosystem[J]. Journal of Beijing Forestry University, 2015, 37(8):31-39.

    [9] 宋长春, 阎百兴, 王跃思, 王毅勇, 娄彦景, 等. 三江平原沼泽湿地CO2和CH4通量及影响因子[J]. 科学通报, 2003, 48(23):2473-2477.
    [10] 吴方涛, 曹生奎, 曹广超, 汉光昭, 林阳阳, 等. 青海湖高寒藏嵩草湿草甸湿地生态系统CO2通量变化特征[J]. 生态与农村环境学报, 2018, 34(2):123-131.

    Wu FT, Cao SK, Cao GC, Han GZ, Lin YY, et al. Variation of CO2 flux of alpine wetland ecosystem of Kobresia tibetica wet meadow in Lake Qinghai[J]. Journal of Ecology and Rural Environment, 2018, 34(2):123-131.

    [11]

    Srinivasa RP, Kambhammettu BP. Dynamics of crop coefficients for citrus orchards of central India using water balance and eddy covariance flux partition techniques[J]. Agr Water Manage, 2019, 212:68-77.

    [12]

    Coates TW, Flesch TK, McGinn SM, Charmley E, Chen D. Evaluating an eddy covariance technique to estimate point-source emissions and its potential application to grazing cattle[J]. Agr Forest Meteorol, 2017, 234:164-171.

    [13]

    Aouade G, Ezzahar J, Amenzou N, Er-Raki S, Benkaddour A, et al. Eddy covariance system and meteorological measurements for partitioning evapotranspiration, of winter wheat, into soil evaporation and plant transpiration in a semi-arid region[J]. Agr Water Manage, 2016, 177:181-192.

    [14] 孙恒. 天目山常绿落叶阔叶混交林碳水通量及能量通量的特征研究[D]. 杭州:浙江农林大学,2017.
    [15] 张晓娟, 吴志祥, 杨川, 管利民. 海南岛橡胶林生态系统水汽通量及其影响因子研究[J]. 热带作物学报, 2015, 36(8):1432-1439.

    Zhang XJ, Wu ZX, Yang C, Guan LM. Water vapor flux exchange and its environmental factors in a tropical rubber plantation ecosystem in Hainan Island[J]. Chinese Journal of Tropical Crops, 2015, 36(8):1432-1439.

    [16]

    Neilson RP, King GA, Koerper G. Toward a rule-based biome mode[J]. Landscape Ecol, 1992, 7(1):27-43.

    [17]

    Hetherington AM, Woodward FI. The role of stomata in sensing and driving environmental change[J]. Nature, 2003, 424(6951):901-908.

    [18] 王妍. 长江中下游滩地抑螺防病林生态系统碳水通量及碳贮量研究[D]. 北京:中国林业科学研究院,2006.
    [19] 曹生奎, 曹广超, 陈克龙, 冯起. 李忠勤, 等. 青海湖高寒湿地生态系统CO2通量和水汽通量间的耦合关系[J]. 中国沙漠, 2016, 36(5):1286-1295.

    Cao SK, Cao GC, Chen KL, Feng Q. Li ZQ, et al. Coupling relationships between alpine wetland ecosystem CO2 and vapor fluxes around the Qinghai Lake[J]. Journal of Desert Research, 2016, 36(5):1286-1295.

    [20] 李金群,葛继稳,彭凤姣,李艳元,周颖, 等. 大九湖泥炭湿地生态系统碳水通量及水分利用效率研究[J]. 安全与环境工程, 2019, 26(1):14-25.

    Li JQ, Ge JW, Peng FJ, Li YY, Zhou Y, et al. Studies on carbon-water flux and water use efficiency in Dajiuhu peat wetland ecosystem[J]. Safety and Environmental Engineering,2019, 26(1):14-25.

    [21] 彭凤姣, 葛继稳, 李永福, 李艳元, 程腊梅, 等. 神农架大九湖泥炭湿地水汽通量特征及生态意义[J]. 安全与环境工程, 2017, 24(5):1-8, 59.

    Peng FJ, Ge JW, Li YF, Li YY, Cheng LM, et al. Characteristics of water vapor flux and their ecological significance in the peat wetlands of Dajiuhu, Shennongjia[J]. Safety and Environmental Engineering, 2017, 24(5):1-8, 59.

    [22] 牛晓栋, 江洪, 方成圆, 陈晓峰, 孙恒. 天目山常绿落叶阔叶混交林生态系统水汽通量特征[J]. 浙江农林大学学报, 2016, 33(2):216-224.

    Niu XD,Jiang H,Fang CY,Chen XF, Sun H, et al. Water vapor flux features of an evergreen and deciduous broadleaf mixed forest in Mount Tianmu area[J]. Journal of Zhejiang A & F University, 2016, 33(2):216-224.

    [23] 杨丽, 李春宇, 余绍文, 刘德良. 湿地生态完整性评价方法研究进展[J]. 安全与环境工程,2008,15(4):1-4.

    Yang L, Li CY, Yu SW, Liu DL. Progress in research of assessment methods for measuring the ecological integrity of wetlands[J]. Safety and Environmental Engineering, 2008, 15(4):1-4.

    [24] 李辉东, 关德新, 袁凤辉, 王安志, 金昌杰, 等. 科尔沁草甸生态系统水分利用效率及影响因素[J]. 生态学报, 2015, 35(2):478-488.

    Li HD, Guang DX, Yuan FH, Wang AZ, Jin CJ, et al. Water use efficiency and its influential factor over Horqin meadow[J]. Acta Ecologica Sinica, 2015, 35(2):478-488.

    [25] 周文昌, 史玉虎, 崔鸿侠, 张志麒, 杨敬元. 神农架大九湖湿地保护与管理对策[J]. 湿地科学与管理, 2017, 13(2):34-37.

    Zhou WC, Shi YH, Cui HX, Zhang ZL, Yang JY. The countermeasures for protection and management of Dajiu Lake wetland in Shennongjia[J]. Wetland Science & Management, 2017, 13(2):34-37.

    [26] 陈文婧. 城市绿地生态系统碳水通量研究[D]. 北京:北京林业大学, 2013.
    [27] 谢琰, 文军, 刘蓉, 王欣, 贾东于. 太阳辐射和水汽压差对黄河源区高寒湿地潜热通量的影响研究[J]. 高原气象, 2018, 37(3):614-625.

    Xie Y, Wen J, Liu R, Wang X, Jia DY. The role of solar radiation and water vapor pressure deficit on controlling latent heat flux density over the alpine wetland of the source region of the Yellow River[J]. Plateau Meteorology, 2018, 37(3):614-625.

    [28] 刘玉莉. 安吉毛竹林和太湖源雷竹林碳水耦合及水分利用效率研究[D]. 杭州:浙江农林大学, 2014.
    [29] 黄仲冬, 齐学斌, 樊向阳, 乔冬梅, 李中阳,等. 降雨和蒸散对夏玉米灌溉需水量模型估算的影响[J]. 农业工程学报, 2015, 31(5):85-92.

    Huang ZD, Qi XB, Fan XY, Qiao DM, Li ZY,et al. Impact of rainfall and evapotranspiration on irrigation requirement of summer maize[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(5):85-92.

    [30]

    Soubie R, Heinesch B, Granier A, Aubinet M, Vincke C. Evapotranspiration assessment of a mixed temperate forest by four methods:eddy covariance, soil water budget, analytical and model[J]. Agr Forest Meteorol, 2016(228):191-204.

    [31]

    Allen RG, Pereira LS, Howell TA, Jensen ME. Evapotranspiration information reporting:Ⅰ. Factors governing measurement accuracy[J]. Agr Water Manage, 2011, 98(6):899-920.

    [32] 高扬子, 何洪林, 张黎, 路倩倩, 于贵瑞, 等. 近50年中国地表净辐射的时空变化特征分析[J]. 地球信息科学学报, 2013, 15(1):1-10.

    Gao YZ, He HL, Zhang L, Lu QQ, Yu GR, et al. Spatio-temporal variation characteristics of surface net radiation in China over the past 50 years[J]. Journal of Geo-Information Science, 2013, 15(1):1-10.

    [33] 王雷, 刘辉志, David Schaffrath, Christian Bernhofer. 内蒙古羊草和大针茅草原下垫面水汽、CO2通量输送特征[J]. 高原气象, 2010, 29(3):605-613.

    Wang L, Liu HZ, David Schaffrath, Christian Bernhofer. Transfer characteristics of water vapor and CO2 flux over Leymus chinensis and Stipa grandis steppe surfaces in Inner Mongolia[J]. Plateau Meteorology, 2010, 29(3):605-613.

    [34] 全艳嫦. 城市草坪水汽通量与蒸散量的变化特征分析[D]. 北京:北京林业大学, 2012.
    [35] 李菊, 刘允芬, 杨晓光, 李俊. 千烟洲人工林水汽通量特征及其与环境因子的关系[J]. 生态学报, 2006, (26)8:2449-2456.

    Li J, Liu YF, Yang XG, Li J. Studies on water vapor flux characteristic and the relationship with environment factors over a planted coniferous forest in Qianyanzhou station[J]. Acta Ecologica Sinica, 2006, (26)8:2449-2456.

    [36] 郭瑞萍, 莫兴国. 森林、草地和农田典型植被蒸散量的差异[J]. 应用生态学报, 2007(8):1751-1757.

    Guo RP, Mo XG. Differences of evapotranspiration on forest, grassland and farmland[J]. Chinese Journal of Applied Ecology, 2007(8):1751-1757.

    [37] 蔺恩杰, 江洪, 陈云飞. 太湖源雷竹林水汽通量变化及其对净辐射的响应[J]. 浙江农林大学学报, 2013, 30(3):313-318.

    Lin EJ, Jiang H, Chen YF. Water vapor flux variation and net radiation for a Phyllostachys violascens stand in Taihuyuan[J]. Journal of Zhejiang A & F University, 2013, 30(3):313-318.

    [38] 万志红, 李荣平, 周广胜, 王莹, 王婉昭, 等. 锦州地区玉米农田生态系统水汽通量变化特征及其调控机制[J]. 气象与环境学报, 2016, 32(6):155-159.

    Wan ZH, Li RP, Zhou GS, Wang Y, Wang WZ, et al. Variation characteristics and regulation mechanisms of water vapor flux over a rain-fed maize farmland ecosystem in Jinzhou[J]. Journal of Meteorology and Environment, 2016, 32(6):155-159.

  • 期刊类型引用(4)

    1. 孙钦宏,马洪波,齐彦斌,于冬佳,樊嘉璐. 长白山麓夏秋季气态和液态水分布特征. 气象与环境学报. 2024(01): 47-53 . 百度学术
    2. 冯印成,王云琦,王玉杰,王凯,王松年,王杰帅. 重庆缙云山针阔混交林水汽通量特征及其影响因子. 植物生态学报. 2022(08): 890-903 . 百度学术
    3. CHEN Junhong,ZHANG Lihua,CHEN Peipei,MA Yongming. Application of Spatially Distributed Calibrated Hydrological Model in Evapotranspiration Simulation of Three Gorges Reservoir Area of China: A Case Study in the Madu River Basin. Chinese Geographical Science. 2022(06): 1083-1098 . 必应学术
    4. 周文昌,张曼胤,张志麒,史玉虎,崔鸿侠. 神农架大九湖湿地生态系统服务功能价值评估. 湿地科学与管理. 2021(02): 38-42 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  504
  • HTML全文浏览量:  0
  • PDF下载量:  464
  • 被引次数: 6
出版历程
  • 收稿日期:  2019-11-13
  • 修回日期:  2020-02-10
  • 网络出版日期:  2022-10-31
  • 发布日期:  2020-08-27

目录

    /

    返回文章
    返回