Effects of varied soil nitrogen and phosphorus concentrations on the growth and biomass allocation of three leguminous tree seedlings
-
摘要: 选取海南尖峰岭热带山地雨林中不同功能类群的豆科树木幼苗(代表低氮需求的长脐红豆Ormosia balansae Drake、中氮需求的荔枝叶红豆Ormosia semicastrata Hance f. litchifolia How和高氮需求的猴耳环Archidendron clypearia(Jack)I.C.Nielsen)为对象,设置5个浓度梯度的氮(N)添加和2个浓度梯度的磷(P)添加养分控制实验,研究苗木的生长表现。结果显示:(1)氮添加条件下,3个树种幼苗的苗高、总叶面积、根长、根表面积、生物量5个指标对中高浓度氮添加的敏感性大小均为长脐红豆 > 猴耳环 > 荔枝叶红豆;其中,叶总面积对氮肥浓度变化的响应最敏感,长脐红豆的根长、根表面积以及猴耳环根长的响应敏感性次之。(2)长脐红豆和猴耳环幼苗的根冠比受氮肥添加浓度的影响不显著;荔枝叶红豆幼苗的根冠比则随氮肥添加浓度的升高而增大,这种适应策略反映出荔枝叶红豆幼苗对添加中高浓度氮肥有较强的耐受能力。(3)磷添加条件下,长脐红豆和猴耳环幼苗的生长速率为低磷>高磷,表明这2个树种在幼苗阶段为低氮、低磷需求;荔枝叶红豆在低氮处理下的生长速率为高磷>低磷,表明该树种幼苗阶段为低氮、高磷需求。Abstract: We selected three different functional groups of leguminous tree seedlings from a 60 hm2 sample plot of tropical mountain rainforest in Jianfengling, Hainan, China, as the study objects. The three leguminous trees included Ormosia balansae Drake, Ormosia semicastrata Hance f. litchifolia How, and Archidendron clypearia (Jack) I. C. Nielsen, with low, medium, and high nitrogen (N) demands, respectively. We conducted a soil nutrient control experiment in a greenhouse and compared growth performance of the three leguminous plant seedlings under five N and two phosphorus (P) addition concentration gradients. Results showed that:(1) Under N enrichment, the sensitivities of the five indicators, i.e., seedling height, total leaf area, total root length, root surface area, and biomass, to medium and high N addition were in the order of O. balansae > A. clypearia > O. semicastrata f. litchifolia. Additionally, total leaf area was the most sensitive index to changes in soil N concentration, followed by total root length and root surface area of O. semicastrata f. litchifolia seedlings as well as total root length of A. clypearia seedlings. (2) The root shoot ratio of O. semicastrata f. litchifolia and A. clypearia seedlings was relatively unaffected by N addition. In contrast, the root shoot ratio of O. semicastrata f. litchifolia seedlings increased markedly with the increase in N concentration, implying that O.semicastrata f. litchifolia had a greater tolerance to medium and high soil N concentrations. (3) Under P enrichment, O. balansae and A. clypearia seedlings showed a greater growth rate under low than high P addition, indicating low N and low P demand for these two species at the seedling stage. However, O. semicastrata f. litchifolia seedlings grew faster with high P and low N treatment, thus suggesting low N and high P demand at the seedling stage.
-
Keywords:
- Legume trees /
- Soil nitrogen addition /
- Seedling growth /
- Biomass allocation /
- Root shoot ratio
-
-
[1] 安玉艳. 杠柳适应黄土丘陵干旱环境的生产生态策略[D]. 北京:中国科学院研究生院(教育部水土保持与生态环境研究中心), 2011:7-8. [2] Seki M, Umezawa T, Urano K, Shinozaki K. Regulatory metabolic networks in drought stress responses[J]. Curr Opin Plant Biol, 2007, 10(3):296-302.
[3] 程军回,张元明. 水分胁迫下荒漠地区2种草本植物生物量分配策略[J]. 干旱区研究, 2012, 29(3):432-439. Cheng JH, Zhang YM. Strategies for biomass allocation of two desert plant species under water stress[J]. Arid Zone Research, 2012, 29(3):432-439.
[4] 贾风勤. 植物对环境胁迫的适应策略[J]. 生物学教学, 2009, 34(11):8-9. Jia FQ. Adaptive policies against environmental stress in plants[J]. Biology Teaching, 2009, 34(11):8-9.
[5] 郭丰辉. 天然草原三种类型植物对低磷环境的适应能力及适应策略研究[D]. 呼和浩特:中国农业科学院, 2016:15-16. [6] 施宇. 延河流域植物功能性状对环境变化的响应和植物适应策略研究[D]. 杨凌:西北农林科技大学,2012:19-21. [7] Reich PB, Oleksyn J. Global patterns of plant leaf N and P in relation to temperature and latitude[J]. Proc Natl Acad Sci U S A, 2004, 101(30):11001-11006.
[8] Wardle DA, Walker LR, Bardgett RD. Ecosystem properties and forest decline in contrasting long-term chronosequences[J]. Science, 2004, 305:509-513.
[9] Hedin LO, Brookshire ENJ, Menge DNL, Barron AR. The nitrogen paradox in tropical forest ecosystems[J]. Annu Rev Ecol Evol Syst, 2009, 40(1):613-635.
[10] Ng AYS, Hau BCH. Nodulation of native woody legumes in Hong Kong, China[J]. Plant and Soil,2009, 316(1-2):35-43.
[11] Houlton BZ, Wang YP, Vitousek PM, Field CB. A unifying framework for dinitrogen fixation in the terrestrial biosphere[J]. Nature, 2008, 454:327-330.
[12] ter Steege H, Pitman NCA, Philips OL, Chave J, Sabatier D, Duque A. Continental-scale patterns of canopy tree composition and function across Amazonia[J]. Nature, 2006, 443:444-447.
[13] 许涵, 李意德, 骆土寿, 等. 海南尖峰岭热带山地雨林:群落特征、树种及其分布格局[M]. 北京:中国林业出版社, 2015:14-21. [14] 李意德, 许涵, 骆土寿, 等. 中国生态系统定位观测与研究数据集:生物物种数据集[M]. 北京:中国农业出版社, 2012:2-3. [15] 周璋, 李意德, 林明献, 陈德祥,许涵,骆土寿,等. 海南岛尖峰岭热带山地雨林区26年的气候变化特征:光、水和风因子[J]. 生态学报, 2009, 29(3):1112-1120. Zhou Z, Li YD, Lin MX, Chen DX, Xu H, Luo TS, et al. Climate changes characteristics over tropical mountain rainforest in Jianfengling during the recent 26 years:radiation, moisture, and wind factors[J]. Acta Ecologica Sinica, 2009, 29(3):1112-1120.
[16] Higuchi H, Sakuratani T, Utsunomiya N. Photosynthesis, leaf morphology, and hoot growth as affected by temperatures in cherimoya (Annona cherimola Mill.) trees[J]. Sci Hortic, 1999, 80(1-2):91-104.
[17] Cornelissen J, Lavorel S, Garnier E, Diaz S, Buchmann N, Gurvich D, et al. A handbook of protocols for standar-dised and easy measurement of plant functional traits worldwide[J]. Aust J Bot, 2003, 51(4):335-380.
[18] 薛海霞. 白刺生物量分配和养分含量对施肥的响应[D]. 北京:中国林业科学研究院, 2016:12-23. [19] Adams MA, Turnbull TL, Sprent JI, Buchmann N. Legumes are different:leaf nitrogen, photosynthesis, and water use efficiency[J]. Proc Natl Acad Sci U S A, 2016, 113(5):4098-4103.
[20] Bhaskar R, Porder S, Balvanera P, Edwards EJ. Ecological and evolutionary variation in community nitrogen use traits during tropical dry forest secondary succession[J]. Ecology, 2016, 97(5):1194-1206.
[21] Nasto MK, Alvarez CS, Lekberg Y, Sullivan BW, Townsend AR, Cleveland CC. Interactions among nitrogen fixation and soil phosphorus acquisition strategies in lowland tropical rain forests[J]. Ecol Lett, 2014, 17(10):1282-1289.
[22] 张振琦. 内蒙古温带典型草原八种植物的资源分配策略及其对氮素水平的响应[D]. 呼和浩特:内蒙古大学, 2006:12-20. [23] 魏明吉. 氮磷钾对萝卜生长发育、产量及品质的影响[D]. 武汉:华中农业大学, 2004:9-17. [24] 林建平,邓爱珍,赵小敏,江叶枫,韩逸,谢雨. 南方典型丘陵山区耕地土壤养分随高程变化特征分析[J]. 农业机械学报,2019, 50(5):300-309. Lin JP, Deng AZ, Zhao XM, Jiang YF, Han Y, Xie Y. Variation characteristics of soil nutrients of cultivated land in different elevation fields in typical hilly areas of southern mountains[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(5):300-309.
[25] 李晓华,田原润,何永美,郭先华,苏友波,胡怡悦,张建育. 元阳梯田景区森林土壤养分的分布特征[J]. 西部林业科学,2018, 47(6):112-120. Li XH, Tian YR, He YM, Guo XH, Su YB, Hu YY, Zhang JY. Distribution characteristics of forest soil nutrients in yuanyang terrace[J]. Journal of West China Forestry Science, 2018, 47(6):112-120.
[26] 雷斯越, 赵文慧, 杨亚辉, 吕渡, 白云斌, 何亮, 等. 不同坡位植被生长状况与土壤养分空间分布特征[J]. 水土保持研究, 2019, 26(1):86-91, 105. Lei SY, Zhao WH, Yang YH, Lü D, Bai YB, He L, et al. Spatial distribution characteristics of soil nutrients and vegetation growth status in different slopes[J]. Research of Soil and Water Conservation, 2019, 26(1):86-91, 105.
[27] 李宁宁,张光辉,王浩,张宝军,杨寒月. 黄土丘陵沟壑区浅层滑坡堆积体植被演替特征及土壤养分响应[J]. 山地学报, 2018, 36(5):669-678. Li NN, Zhang GH, Wang H, Zhang BJ, Yang HY. Properties of vegetation succession on shallow landslide deposits in loess hilly and gully region and the related response of soil nutrient[J]. Mountain Research, 2018, 36(5):669-678.
[28] 何季. 荒漠植物白刺对模拟增雨的生理生态响应及适应策略[D]. 北京:中国林业科学研究院,2015:10-12. [29] Chapin FS, Matson PA, Mooney HA. Principles of Terrestrial Ecosystem Ecology[M]. New York:Springer, 2011:164-166.
[30] 邓瑞明. 戴云山不同类型森林生物量差异特征及其与土壤养分的关系[J]. 林业建设, 2018(6):29-32. Deng RM. Relationship between the biomass characteristics and soil nutrients among different forest types in Daiyun Mountain[J]. Forestry Construction, 2018(6):29-32.
[31] 李雯,张程,王庆成,郝龙飞,刘爽. 指数施肥对白桦裸根苗生长动态、生物量分配及光合作用的影响[J]. 植物研究, 2015, 35(3):391-396, 405. Li W, Zhang C, Wang QC, Hao LF, Liu S. Effect of exponential fertilization on growth dynamic,biomass allocation and photosynthesis of betula platyphylla bare-rooted seedlings[J]. Bulletin of Botanical Research, 2015, 35(3):391-396, 405.
[32] 荀挚峰,白龙,曲波,许玉凤,李光海,詹忠浪,石九曜. 不同氮添加对入侵植物瘤突苍耳和本地近缘植物苍耳及两者杂交种的生长影响[J]. 草业学报, 2017, 26(5):51-61. Xun ZF, Bai L, Qu B, Xu YF, Li GH, Zhan ZL, Shi JY. Effect of nitrogen treatment on growth of the invasive plant Xanthium strumarium, the native plant Xanthium sibiricum, and their reciprocal crosses[J]. Acta Prataculturae Sinica, 2017, 26(5):51-61.
[33] Enquist BJ, Niklas KJ. Invariant scaling relations across tree-dominated communities[J]. Nature, 2001, 410(6829):655-60.
[34] 单立山,李毅,段雅楠,耿东梅,李真银,张荣,等. 红砂幼苗根系形态特征和水分利用效率对土壤水分变化的响应[J]. 西北植物学报, 2014, 34(6):1198-1205. Shan LS, Li Y, Duan YN, Geng DM, Li ZY, Zhang R, et al. Response of root morphology and water use efficiency of Reaumuria soongorica to soil water change[J]. Acta Botanica Boreali-Occidentalia Sinica, 2014, 34(6):1198-1205.
[35] Farrar JF, Jones DL. The control of carbon acquisition by roots[J]. New Phytol, 2010, 147(1):43-53.
[36] 贺星,马文红,梁存柱,红梅,柴曦,赵巴音那木拉,等. 养分添加对内蒙古不同草地生态系统生物量的影响[J]. 北京大学学报(自然科学版), 2015, 51(4):657-666. He X, Ma WH, Liang CZ, Hong M, Chai X, Zhao Bayinnamula, et al. Effects of nutrient additions on community biomass varied among different grassland ecosystems of Inner Mongolia[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2015, 51(4):657-666.
[37] Lei Y, Xiao H. Impacts of alien plant invasions on biodiversity and evolutionary responses of native species[J]. Biodiversity Science, 2010, 18(6):622-630.
[38] Mealor BA, Hild AL. Post-invasion evolution of native plant populations:a test of biological resilience[J]. Oikos, 2010, 116(9):1493-1500.
[39] 邰书静. 氮磷钾配施对饲用玉米产量和品质的影响[D]. 杨凌:西北农林科技大学, 2006:9-13. -
期刊类型引用(15)
1. 张少纯,何至杭,曾婷婷,饶雯青,王艺颖,莫其锋. 铁刀木幼苗生长及不同器官非结构性碳水化合物、氮、磷对磷添加的响应. 福建农林大学学报(自然科学版). 2025(02): 217-229 . 百度学术
2. 董佳乐,许涵,解亚鑫,陈洁,李艳朋,雷婕. 氮添加对不同氮需求豆科植物幼苗根系形态性状和根叶养分含量的影响. 生态学杂志. 2024(05): 1255-1262 . 百度学术
3. 王小文,孙海龙,肖明砾. 生态护岸客土营养元素对紫穗槐幼苗生长的影响. 水土保持应用技术. 2024(05): 1-4 . 百度学术
4. 叶冬梅,余恩萍,王家彬,朱韦光,杜敏茜,王峥峰. 中山五桂山重点保护植物软荚红豆的群落学特征. 热带林业. 2023(02): 65-69 . 百度学术
5. 杜旭龙,余恒,高艳丽,刘小飞,黄锦学,熊德成. 氮沉降对杉木幼树生物量及其分配的影响. 森林与环境学报. 2023(05): 523-529 . 百度学术
6. 钟珍梅,杨庆,翁伯琦,李春燕. 南方丘陵区施肥量与2种决明生长性能关系分析. 草地学报. 2023(10): 3085-3093 . 百度学术
7. 苏炜,陈平,吴婷,刘岳,宋雨婷,刘旭军,刘菊秀. 氮添加与干季延长对降香黄檀幼苗非结构性碳水化合物、养分与生物量的影响. 植物生态学报. 2023(08): 1094-1104 . 百度学术
8. 余梦林,周金木,杨帆,韩峰,李有春,胡生燕,汤东生. 宽叶酢浆草对种植密度、氮肥和间作的适应特征. 杂草学报. 2023(04): 44-52 . 百度学术
9. 郭璐瑶,苗灵凤,李大东,向丽珊,杨帆. 施氮和增温对降香黄檀幼苗生长发育和生理特征的影响. 植物科学学报. 2022(02): 259-268 . 本站查看
10. 张雨. 氮对樟子松幼苗生长及生理特性的影响. 绿色科技. 2022(19): 84-86+90 . 百度学术
11. 陈昱东,吕光辉,张磊,蒋腊梅,王恒方. 荒漠植物功能性状和生物量对土壤水盐环境的响应. 新疆农业科学. 2022(10): 2574-2584 . 百度学术
12. 高苑苑,车路璐,彭培好,李景吉. 增温加氮对两种不同来源加拿大一枝黄花子一代生长的影响. 东北林业大学学报. 2021(08): 51-55 . 百度学术
13. 刘幸红,张文馨,黄雯佳,马海林,潘亚冬,刘方春,刘翠兰,燕丽萍,吴德军. 容器育苗基质对蓉城竹(Phyllostachys bissetii)生长的影响. 中国农学通报. 2021(25): 47-51 . 百度学术
14. 唐胶,彭祚登,贾清棋,熊建军,刘春和,冯天爽,王海东. 添加城市排水污泥对竹柳和欧美107杨嫩枝扦插苗生长及养分积累的影响. 北京林业大学学报. 2020(10): 84-95 . 百度学术
15. 王革平. 氮磷钾肥配施对草原植物群落生物量的影响. 草原与草业. 2020(04): 27-31 . 百度学术
其他类型引用(9)
计量
- 文章访问数: 862
- HTML全文浏览量: 16
- PDF下载量: 611
- 被引次数: 24