Cloning and stress expression analysis of the TaHDA19 gene in Triticum aestivum
-
摘要: 利用基因克隆技术从小麦(Triticum aestivum L.)品种‘科农199’中扩增得到一个RPD3/HDA1型组蛋白去乙酰化酶基因TaHDA19,采用生物信息学方法对该基因序列的结构特征进行分析,并对植株不同组织及不同胁迫条件下该基因的表达量进行检测。结果显示:TaHDA19的开放阅读框长1560 bp,共编码519个氨基酸;该基因的氨基酸序列存在组蛋白去乙酰化酶(HDAC)家族典型的结构域Hist-deacety1。该基因上游启动子区含有多种响应元件,如:光响应元件I-box和G-box,脱落酸响应元件ABRE和低温响应元件LTR等。‘科农199’TaHDA19基因的表达结果表明:该基因在根、茎、叶片和幼穗中均有表达,其中在叶片中表达量最高;采用脱落酸、氯化钠和PEG分别处理植株0、1、3、6、12、24 h后,基因的表达水平出现差异;在对植株的12个生育时期进行35℃和42℃热胁迫处理1 h后,该基因表达量均出现上调。研究结果表明TaHDA19可能在小麦响应非生物胁迫过程中发挥重要作用。Abstract: A RPD3/HDA1 histone deacetylase gene TaHDA19 was amplified from the Triticum aestivum variety ‘Kenong 199’ by gene cloning techniques and analyzed by bioinformatics. Results showed that gene's open reading frame (ORF) was 1560 bp in length and encoded 519 amino acids. The amino acid sequence contained the typical domain Hist-deacety1. Promoter analysis showed that the gene contained a variety of response elements, such as light response elements I-box and G-box, hormone response element ABRE, and low temperature response element LTR. The gene expression pattern of ‘Kenong 199’ in different tissues and under different stress conditions was analyzed. Results showed that the gene was expressed in roots, stems, leaves, and young spikes, with the highest expression found in leaves. In addition, the gene expression levels were different under ABA, NaCl, and PEG treatment for 0, 1, 3, 6, 12, and 24 h. The gene was up-regulated in the 12 growth stages after heat-stress treatment at 35℃ and 42℃ for 1 h compared with the control.
-
Keywords:
- Triticum aestivum /
- TaHDA19 gene /
- Bioinformatics /
- Gene expression analysis
-
-
[1] Allfrey VG, Faulkner R, Mirsky AE. Acetylation and methy-lation of histones and their possible role in the regulation of RNA synthesis[J]. Proc Natl Acad Sci USA, 1964, 51(5):786-794.
[2] Berger SL. The complex language of chromatin regulation during transcription[J]. Nature, 2007, 447(7143):407-412.
[3] Waterborg JH. Plant histone acetylation:In the beginning epigenetic control of cellular and developmental processes in plants[J]. BBA-Gene Regul Mech, 2011, 1809(8):353-359.
[4] Bertos NR, Wang AH, Yang X. ClassⅡ histone deacetylases:structure, function, and regulation[J]. Biochem Cell Biol, 2001, 79(3):243-252.
[5] Taunton J, Hassig CA, Schreiber SL. A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3[J]. Science, 1996, 272(5260):408-411.
[6] Gregoretti I, Lee YM, Goodson HV. Molecular evolution of the histone deacetylase family:functional implications of phylogenetic analysis[J]. J Mol Biol, 2004, 338(1):17-31.
[7] Demetriou K, Kapazoglou A, Tondelli A, Francia E, Stanca MA, et al. Epigenetic chromatin modifiers in barley:Ⅰ. Cloning, mapping and expression analysis of the plant specific HD2 family of histone deacetylases from barley, during seed development and after hormonal treatment[J]. Physiol Plantarum, 2010, 136(3):358-368.
[8] Pandey R, Müller A, Napoli CA, Selinger DA,Pikaard CS, et al. Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes[J]. Nucleic Acids Res, 2002, 30(23):5036-5055.
[9] Yang XJ, Seto E. HATs and HDACs:from structure, function and regulation to novel strategies for therapy and prevention[J]. Oncogene, 2007, 26(37):5310-5318.
[10] Hollender C, Liu Z. Histone deacetylase genes in Arabidopsis development[J]. J Integr Plant Biol, 2008, 50(7):875-885.
[11] Ma X, Lü S, Zhang C, Yang C. Histone deacetylases and their functions in plants[J]. Plant Cell Rep, 2013, 32(4):465-478.
[12] Chen LT, Luo M, Wang YY, Wu K. Involvement of Arabidopsis histone deacetylaseHDA6 in ABA and salt stress response[J]. J Exp Bot, 2010, 61(12):3345-3353.
[13] Zheng Y, Ding Y, Sun X, Xie S, Wang D, et al. Histone deacetylaseHDA9 negatively regulates salt and drought stress responsiveness in Arabidopsis[J]. J Exp Bot, 2016, 67(6):1703-1713.
[14] Zhao J, Li M, Gu D, Liu X, Zhang J, et al. Involvement of rice histone deacetylaseHDA705 in seed germination and in response to ABA and abiotic stresses[J]. Biochem Bioph Res Co, 2016, 470(2):439-444.
[15] Su LC, Deng B, Liu S, Li LM, Hu B, et al. Isolation and characterization of an osmotic stress and ABA induced histone deacetylase in Arachis hygogaea[J]. Front Plant Sci, 2015, 6(5):512-522.
[16] Liu Z, Xin M, Qin J, Peng H, Ni Z, et al. Temporal transcriptome profiling reveals expression partitioning of homeo-logous genes contributing to heat and drought acclimation in wheat (Triticum aestivum Linn.)[J]. BMC Plant Biol, 2015, 15(1):1-20.
[17] 刘燕, 赵毅, 吕千, 张丽, 李立群, 李学军.小麦TaHTAS-5A基因的克隆、表达分析及亚细胞定位[J]. 麦类作物学报, 2018, 38(10):1137-1145. Liu Y, Zhao Y, Lü Q, Zhang L, Li LQ, Li XJ, et al. Cloning, expression analysis and subcellular localization of wheatTaHTAS-5A gene[J]. Journal of Triticeae Crops, 2018, 38(10):1137-1145.
[18] 田文, 郭启平, 李梓彰, 丁宁, 张珊, 闻珊珊.普通小麦DREB基因家族的全基因组鉴定及热胁迫下的表达模式分析[J]. 麦类作物学报, 2018, 38(10):1146-1156. Tian W, Guo QP, Li ZZ, Ding N, Zhang S, Wen SS. Genome-wide indentification and expression analysis under heat stress of the DREB transcription factor family in bread wheat (Triticum aestivum L.)[J]. Journal of Triticeae Crops, 2018, 38(10):1146-1156.
[19] Pabo CO, Sauer RT. Transcription factors:structural families and principles of DNA recognition[J]. Annu Rev Biochem, 1992, 61(61):1053-1095.
[20] Kim KC, Lai Z, Fan B, Chen Z. ArabidopsisWRKY38 and WRKY62 transcription factors interact with histone deacetylase 19 in basal defense[J]. Plant Cell, 2008, 20(9):2357-2371.
[21] Ranalli T. Tetrahymena histone acetyltransferase A:a homolog to yeast Gcn5p linking histone acetylation to gene activation[J]. Cell, 1996, 84(6):843-851.
[22] Taunton J, Hassig CA, Schreiber SL. A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p[J]. Science, 1996, 272(5260):408-411.
[23] Wu K, Tian L, Malik K, Brown D, Miki B. Functional analysis of HD2 histone deacetylase homologues in Arabidopsis thaliana[J]. Plant J, 2000, 22(1):9-17.
[24] Chen L, Limin H, Caiguo X, Yu Z, Dao XZ. Altered levels of histone deacetylaseOsHDT1 affect differential gene expression patterns in hybrid rice[J]. PLoS One, 2011, 6(7):21789-21800.
[25] Nelissen H, Fleury D, Bruno L, Robles P, de Veylder L, et al. The elongata mutants identify a functional elongator complex in plants with a role in cell proliferation during organ growth[J]. Proc Natl Acad Sci USA, 2005, 102(21):7754-7759.
[26] Sridha S, Wu K. Identification of AtHD2C as a novel regulator of abscisic acid responses in Arabidopsis[J]. Plant J, 2006, 46(1):124-133.
[27] Luo M, Wang YY, Liu X, Yang SG, Liu Q, et al. HD2C interacts with HDA6 and is involved in ABA and salt stress response in Arabidopsis[J]. J Exp Bot, 2012, 63(8):3297-3306.
[28] Feldman M, Levy AA. Allopolyploidy-a shaping force in the evolution of wheat genomes[J]. Cytogenet Genome Res, 2005, 109(1-3):250-258.
[29] Hassig CA, Tong JK, Fleischer TC, Owa T, Grable PG, et al. A role for histone deacetylase activity in HDAC1-mediated transcriptional repression[J]. Proc Natl Acad Sci USA, 1998, 95(7):3519-3524.
[30] Benhamed M, Bertrand C, Servet C, Zhou DX. Arabidopsis GCN5, HD1, and TAF1/HAF2 interact to regulate histone acetylation required for light-responsive gene expression[J].Plant Cell, 2006, 18(11):2893-2903.
[31] Yu CW, Alinsug MV, Wu KQ. Phylogenetic analysis, subcellular localization, and expression patterns of RPD3/HDA1 family histone deacetylases in plants[J]. BMC Plant Biol, 2009, 9(1):37-51.
[32] Li X, Lu J, Liu S, Liu X, Lin YY, Li L. Identification of rapidly induced genes in the response of peanut (Arachis hypogaea) to water deficit and abscisic acid[J]. BMC Biotechnol, 2014, 14(1):58-66.
-
期刊类型引用(2)
1. 徐芳,刘丽君,李鹏,姚彦林,孙万仓,武军艳. 白菜型冬油菜HDACs基因家族的鉴定及表达分析. 西北植物学报. 2022(05): 721-735 . 百度学术
2. 杜巧丽,方远鹏,蒋君梅,李向阳,谢鑫. 水稻OsHDAC15基因的克隆、表达分析及原核表达. 植物生理学报. 2021(03): 558-568 . 百度学术
其他类型引用(0)
计量
- 文章访问数: 736
- HTML全文浏览量: 0
- PDF下载量: 521
- 被引次数: 2