高级检索+

基于MaxEnt生态位模型预测对齿藓属(Didymodon)植物在新疆的潜在地理分布

夏尤普·玉苏甫, 买买提明·苏来曼, 维尼拉·伊利哈尔, 张忠心

夏尤普·玉苏甫, 买买提明·苏来曼, 维尼拉·伊利哈尔, 张忠心. 基于MaxEnt生态位模型预测对齿藓属(Didymodon)植物在新疆的潜在地理分布[J]. 植物科学学报, 2018, 36(4): 541-553. DOI: 10.11913/PSJ.2095-0837.2018.40541
引用本文: 夏尤普·玉苏甫, 买买提明·苏来曼, 维尼拉·伊利哈尔, 张忠心. 基于MaxEnt生态位模型预测对齿藓属(Didymodon)植物在新疆的潜在地理分布[J]. 植物科学学报, 2018, 36(4): 541-553. DOI: 10.11913/PSJ.2095-0837.2018.40541
Shuayib Yusup, Mamtimin Sulayman, Winira Ilghar, Zhang Zhong-Xin. Prediction of potential distribution of Didymodon (Bryophyta, Pottiaceae) in Xinjiang based on the MaxEnt model[J]. Plant Science Journal, 2018, 36(4): 541-553. DOI: 10.11913/PSJ.2095-0837.2018.40541
Citation: Shuayib Yusup, Mamtimin Sulayman, Winira Ilghar, Zhang Zhong-Xin. Prediction of potential distribution of Didymodon (Bryophyta, Pottiaceae) in Xinjiang based on the MaxEnt model[J]. Plant Science Journal, 2018, 36(4): 541-553. DOI: 10.11913/PSJ.2095-0837.2018.40541

基于MaxEnt生态位模型预测对齿藓属(Didymodon)植物在新疆的潜在地理分布

基金项目: 

国家自然科学基金资助项目(31460048,31660052)。

详细信息
    作者简介:

    夏尤普·玉苏甫(1990-),男,硕士研究生,主要从事苔藓植物研究(E-mail:shuayib@163.com)。

  • 中图分类号: Q949.35

Prediction of potential distribution of Didymodon (Bryophyta, Pottiaceae) in Xinjiang based on the MaxEnt model

Funds: 

This work was supported by grants from the National Natural Science Foundation (31460048,31660052).

  • 摘要: 该文基于MaxEnt模型,利用获得的132个对齿藓属(Didymodon)植物在新疆分布的信息,结合RCP45 CO2排放情景下2050年和2070年的19个生物气候数据预测该属在当代、2050年和2070年的潜在分布区域。结果显示,最湿季平均温度、年平均气温、最干季降水量和年降水量是影响该属分布最主要的气候因子,其贡献率分别为33.6%、22.2%、16.4%和14.6%;模型模拟准确度高(AUC值达0.84);在当代气候条件下,对齿藓属植物的适宜生境面积占新疆总面积的38.51%;最适分布区域是中部的天山山脉、南部昆仑山脉的东部和西部的帕米尔高原;与当代的分布预测结果相比,未来(2050年和2070年)该属适宜栖息地分布范围总体上呈现退缩趋势;退缩后的适宜生境面积分别占新疆总面积的36.56%和37.87%。温度和降水量可能是引起对齿藓属地理分布退缩的重要气候因子。研究结果可为探讨气候变化对干旱、半干旱区苔藓植物物种分布的影响提供参考资料。
    Abstract: Based on data from 19 bioclimatic variables under the current (1950-2000) and future (2050s, 2070s) climatic conditions with RCP45 CO2 emission scenarios and on 132 distributional records of Didymodon in Xinjiang, we predicted the potential distribution of this genus in Xinjiang in the different periods by using the MaxEnt model and ArcGIS 10.2 software. Results showed that the major factors were mean temperature of wettest quarter, annual mean temperature, precipitation of driest quarter and annual precipitation, with relative contribution percentages of 33.6%, 22.2%, 16.4%, and 14.6%, respectively. For the simulation model with high accuracy, the AUC reached 0.84. For the contemporary climate conditions, suitable habitat of Didymodon accounted for 38.51% of the total area, with the most suitable distribution areas found to be the Tianshan Mountains, east of the Kunlun Mountains, and the Pamir Plateau. Compared to the present distribution, the suitable habitat distribution range of the genus will shrink in the future (2050s and 2070s); after shrinking, the suitable habitat area will account for 36.56% and 37.87% of Xinjiang's total area, respectively. Temperature and precipitation will likely be the important climatic factors causing the geographical distribution retreat of Didymodon. This research provides a reference for studying the effects of climate change on the species distribution of bryophytes in arid and semi-arid areas.
  • [1] 吴鹏程. 苔藓植物生物学[M]. 北京:科学出版社, 1998.
    [2] 胡人亮. 苔藓植物学[M]. 北京:高等教育出版社, 1987.
    [3]

    Turetsky MR, Bond-Lamberty B, Euskirchen E, Talbot J, Frolking S, Mcguire AD, Tuittila ES. The resilience and functional rote of moss in boreal and arctic ecosystems[J]. New Phytal, 2012, 196:49-67.

    [4] 张元明,曹同,潘伯荣. 干旱与半干旱地区苔藓植物生态学研究综述[J]. 生态学报,2002, 22(7):1129-1134.

    Zhang YM, Cao T, Fan BR. A review on the studies of bryophyte ecology in arid and semi-arid areas[J]. Acta Ecologica Sinica, 2002, 22(7):1129-1134.

    [5]

    Concostrina ZL, Martinez L, Rabasa S, Escudero A. The influence of environmental factors on biological factors on biological soils crust:from a community perspective to a species level approach[J]. J Veg Sci, 2014, 25:503-513.

    [6]

    Frego KA. Bryophytes as potential indicators of forest integrity[J]. Forest Ecol Manag, 2007, 242:65-75.

    [7] 龙朝波,张朝晖. 喀斯特石漠化山区苔藓植物水分吸收特征[J]. 水土保持通报,2015,35(2):350-354.

    Long CB, Zhang ZH. Water absorption characteristics of bryophytes in karst rocky desertification area[J]. Bulletin of Soil and Water Conservation, 2015, 35(2):350-354.

    [8] 杨永胜,邱永利,周小泉,穆兴民,卜崇峰. 毛乌素沙地人为干扰苔藓结皮的土壤水分和风蚀效应[J]. 水土保持通报,2015,35(1):20-24.

    Yang YS, Qiu YL, Zhou XQ, Mu XM, Bu CF. Effects of disturbed moss dominated crusts on soil moisture and wind eosion in Mu Us Sandland[J]. Bulletin of Soil and Water Conservation, 2015, 35(1):20-24.

    [9]

    Ermakova EV, Frontasyeva MV, Steinnes E. Air pollution studies in Central Russia (Tula region) using the moss biomonitoring technique, INAA and AAS[J]. J Radioanal Nucl Ch, 2004, 259:51-58.

    [10]

    Jiang YB, Wang TJ, de Bie CAJM, Skidmore AK, Liu XH, Song SS, Zhang L, Wang J, Shao XM. Satellite-derived vegetation indices contribute significantly to the prediction of epiphyllous liverworts[J]. Ecol Indic, 2014, 38:72-80.

    [11]

    Pesch R, Schoeder W. Mosses as bio-indicators for metal accumulation:Statistical aggregation of measurement data to exposure indices[J]. Ecol Indic, 2006, 6:137-152.

    [12]

    Wang S, Zhang Z, Wang Z. Bryophyte communities as bio-monitors of environmental factors in the Goujiang karst bauxite, southwestern China[J]. Sci Total Environ, 2015, 538:270-278.

    [13] 王登富, 张朝辉. 苔藓植物对废弃卡林型金矿区重金属污染的监测评价[J]. 黄金,2015,36:83-87.

    Wang DF, Zhang CH. Evaluation of bryophytes on monitoring heavy metals pollution in abandoned carlin gold mine areae[J]. Gold, 2015, 36:83-87.

    [14]

    Ceschin S, Alefi M, Bisceglie S, Savo V, Zuccarello V. Aquatic bryophytes as ecological indicators of the water quality status in the Tiber River basin (Italy)[J]. Ecol Indic, 2012, 14:74-81.

    [15]

    Kozak KH, Graham CH, Wiens JJ. Integrating GIS-basal environmental data into evolutionary biology[J]. Treruls in Ecology & Evolution, 2008, 23:141-148.

    [16]

    Elith J, Graham CH, Erson RP. Novel methods improve prediction of species' distributions from occurrence data[J]. Ecography, 2006, 29:129-151.

    [17]

    Phillids SJ, Anderson RP, Schapire RE. Maximum entropy modeling of species geographic distribution[J]. Ecol Model, 2006, 190:231-259.

    [18] 曾辉,黄冠胜,林伟,粱忆冰, 李志红. 用MaxEnt预测橡胶南美叶疫病菌在全球的潜在地理分布[J]. 植物保护,2008,34(3):88-93.

    Zeng H, Huang GS, Lin W, Liang YB, Li ZH. Prediction of potential geographic distribution of Microcyclus ulei in the world using MaxEnt[J]. Plant Protection, 2008, 34(3):88-93.

    [19] 洪波,陈林,赵惠燕, 程登发. 基于GIS的有害生物分布预测系统研究开发[J]. 计算机工程与设计, 2009, 30(2):499-502.

    Hong B, Chen L, Zhao HY, Cheng DF. Research on prediction system of pest distribution based on GIS[J]. Computer Engineering Design, 2009, 30(2):499-502.

    [20] 常志隆,周益林,赵遵田, 段霸瑜. 基于MaxEnt模型的小麦印度腥黑穗病在中国的适生性分析[J]. 植物保护, 2010, 36(3):110-112.

    Chang ZL, Zhou YL, Zhao ZT, Duan BY. Suitability analysis of Karnal bunt in China based on MaxEnt model[J]. Plant Protection, 2010, 36(3):110-112.

    [21] 雷军成,徐海根.基于MaxEnt的加拿大一枝黄花在中国的潜在分布区预测[J]. 生态与农村环境学报, 2010, 26(2):137-141.

    Lei JC, Xu HG. MaxEnt-based potential distribution of Solidago canadensis in China[J]. Journal of Ecology and Rural Environment, 2010, 26(2):137-141.

    [22]

    Andson RP, Real VS. Artefactual ansences in speciesdistributions:test for Oryzomys albigularis (Rodentia:Muridae) in Venezuela[J]. J Biogeogr, 2003, 30:591-605.

    [23]

    De-Meyer M, Robertson MP, Peterson AT, Mansell MW, Ekesi S, Tsurtuta K, Mwaiko W, Vayssieres JF, Peterson AT. Ecological niches and potential geographical distrubutions of Mediterranean fruit fly (Ceratitis capitata) and Natal friut fly (Ceratitis rosa)[J]. J Biogeogr, 2008, 35:270-281.

    [24] 郭水良,高平磊,娄玉霞. 应用MaxEnt模型预测检疫性杂草毒莴苣在我国的潜在分布范围[J]. 上海交通大学学报:农业科学版, 2011, 29(5):15-19.

    Guo SL, Gao PL, Lou YX. Prediction of potential invasive range of quarantine weed Lactuca serriola in China by MaxEnt model[J]. Journal of Shanghai Jiaotong University:Agricultural Science, 2011, 29(5):15-19.

    [25] 徐磊,潘涌智,黄阳洋. 油茶象的潜在分布区预测[J]. 福建林业科技,2011,38(4):55-58.

    Xu L, Pan YZ, Huang YY. Prediction the potential geographical distribution of Curculio chinensis Chevoeolat[J]. Journal of Fujian Forestry Science and Technology, 2011, 38(4):55-58.

    [26]

    Li BN, Wei W, Ma J, Zhang RJ. Maximum entropy niche-based modeling (Maxent) of potential geographical distributions of fruit flies Dacus bivittatus, D. ciliatus and D. vertebrates (Diptera:Tephritidae)[J]. Journal of Insect, 2009, 52(10):1122-1131.

    [27] 张晓峰,佟友贵,杨建东,黄忠,熊忠平. 基于MaxEnt生态位模型预测球果角胫象在云南的潜在地理分布[J]. 环境昆虫学报, 2013, 35(1):28-32.

    Zhang XF, Tong YG, Yang JD, Huang Z, Xiong ZP. Maximum entropy niche-based modeling (MaxEnt) of potential geographical distribution of weevil Shirahoshizo conifer Chao in Yunnan Province[J]. Journal of Environmental Entomology, 2013, 35(1):28-32.

    [28] 佟友贵,张晓峰,潘涌智,徐磊. 基于MaxEnt生态位模型预测台桧大痣小蜂在云南省的潜在分布[J]. 现代农业科技, 2013(2):166-167.

    Tong YG, Zhang XF, Pan YZ, Xu L. Maximum entropy niche-based modeling (MaxEnt) of potential geographical distribution of Juniperus formosana in Yunnan Province[J]. Modern Agricultural Science and Technology, 2013(2):166-167.

    [29]

    Sergio C, Figueira R, Draper D, Menezes R, Sousa A. Modeling bryophyte distribution based on ecological information for extent of occurrence assessment[J]. Biol Conserv, 2007, 135:341-351.

    [30]

    Jiang Y, Liu X, Song S, Yu Z, Shao X. Diversity and distribution of ground bryophytes in broadleaved forest in Mabian Dafengding National Nature Reserve, Sichuan, China[J]. Acta Ecoligica Sinica, 2015, 35:13-19.

    [31] 于晶,唐艳雪,郭水良. 基于GIS和MaxEnt比较中国砂藓属与紫萼藓属植物地理分布[J]. 植物科学学报, 2012, 30(5):443-458.

    Yu J, Tang YX, Guo SL. Comparison of the geographical distribution of Racomitrium and Grimmia in China using ArcGIS and MaxEnt software[J]. Plant Science Journal, 2012, 30(5):443-458.

    [32] 宋闪闪. 西藏干旱半干旱区丛藓科物种多样性及空间分布的初步研究[D]. 北京:中国农业大学,2015. Song SS. Preliminary study on diversity and distribution of Pottaceae in arid and semiarid area of Tibet, China[D]. Beijing:China Agricultural University, 2015.
    [33] 沈阳,于晶,郭水良. 不同气候变化情境下中国木灵藓属和蓑藓属植物的潜在分布格局[J]. 生态学报,2015,35(19):6449-6459.

    Shen Y, Yu J, Guo SL. Macromitrium and Orthotrichum distribution patterns under different climatewarming scenarios in China[J]. Acta Ecoligica Sinica, 2015, 35(19):6449-6459.

    [34] 刘艳. 气候变化下我国蔓藓属(Meteorium)适生分布的预测[J]. 华东师范大学学报:自然科学版, 2016(6):192-202.

    Liu Y. Prediction of suitable distribution of Meteorium in China under climate change[J]. Journal of East China Normal University:Natural Science, 2016(6):192-202.

    [35] 刘艳,阿提古丽·毛拉,沙毕热木·斯热义力,买买提明·苏来曼. 气候变化下耐旱藓类连轴藓属在新疆的分布模拟[J]. 西北植物学报, 2017, 37(9):1881-1887.

    Liu Y, Atigul M, Sabiram E, Mamtimin S. Modeling potential distribution of the desiccation-tolerant moss genus Schistidium in Xinjiang under climate change[J]. Acta Botanica Boreali-Occidentalia Sinica, 2017, 37(9):1881-1887.

    [36] 程军,沈阳,郭水良. 气候变暖对花叶藓属植物在中国的潜在分布范围影响的预测[J]. 生态科学,2015, 34:9-16.

    Cheng J, Shen Y, Guo SL. Influence of climate warming on potential distribution regions of Calymperes in China[J]. Ecological Science, 2015, 34:9-16.

    [37] 麻亚鸿,李丹丹,于晶,郭水良. 中国蓑藓属与木灵藓属分布式样与气候因子的关系[J]. 生物多样性, 2013, 21:177-191.

    Ma YH, Li DD, Yu J, Guo SL. Geographical distribution patterns of Macromitrium and Orthotrichum in China and their relationship with climate factors[J]. Biodiversity Science, 2013, 21:177-191.

    [38]

    Zander RH. Didymodon Hedw., Flora of North America:Vol.27[M]. New York:Oxford University Press, 2007:539-561.

    [39]

    Frey W, Stech M. Syllabus of Plant Families, A Engler's Syllabus der Pflanzenfamilien. 13th ed. Part 3. Bryophytes and Seedless Vascular Plants[M]. Berlin:Borntraeger, 2009:1-257.

    [40]

    Jiménez JA, David T, Jamers RS. Didymodon californicus (Pottiaceae), a new species from California, USA[J]. Phytotaxa, 2014, 158(1):105-110.

    [41]

    Li XJ, Marshal RC, He S. Moss Flora of China:Vol. 2[M]. Beijing, New York:Science Press, Missouri Botanical Garden Press, 2001:114-250.

    [42] 贾渝,何思. 中国生物物种名录:第1卷:苔藓植物[M]. 北京:科学出版社, 2013:60-113.
    [43]

    Mamtimin S. New checklist of Xinjiang liverworts, Hornworts, and mosses[J]. Journal of Xinjiang University, 2012, 19(3):259-267.

    [44] 夏尤普·玉苏甫,买买提明·苏来曼,赵东平. 藓类植物中国新记录种——无疣对齿藓[J]. 西北植物学报, 2017, 37(5):1038-1041.

    Shuayib Y, Mamtimin S, Zhao DP. Didymodon validus Limpr., New to the moss flora of China[J]. Acta Botanica Boreali-Occidentalia Sinica, 2017, 37(5):1038-1041.

    [45]

    Zhao DP, Mamtimin S, He S. Didymodon kunlunensis D. P. Zhao, S. Mamtimin & S. He (Pottiaceae), a new species from Xinjiang, China[J]. Journal of Bryology, 2018. https://doi.org/10.1080/03736687.2018.1451736.

    [46]

    IPCC. Climate change 2007:Synthesis report. Contribution of working groupsⅠ, Ⅱ and Ⅲ to the fourth assessment report of the Intergovernmental Panel on Climate Change[M]. Geneva:IPCC, 2007.

    [47] 段居琦,周广胜. 中国水稻潜在分布及其气候特征[J]. 生态学报, 2011, 31(22):6659-6668.

    Duan JQ, Zhou GS. Potential distribution of rice in China and its climate characteristics[J]. Acta Ecologica Sinica, 2011, 31(22):6659-6668.

    [48]

    Bellard C, Bertelsmeier C, Leadley P. Impacts of climate change on the future of biodiversity[J]. Ecology Letters, 2012, 15(4):365-377.

    [49]

    Thuiller W, Lavorel S, Araújo MB. Climate change threats to plant diversity in Europe[J]. Proc Natl Acad Sci USA, 2005, 102(23):8245-8250.

    [50]

    Lenoir J, Gégout JC, Marquet PA. A significant upward shift in plant species optimum elevation during the 20th century[J]. Science, 2008, 320:1768-1771.

    [51]

    Frahm JP, Klaus D. Bryophytes as indicators of recent climate fluctuations in central Europe[J]. Lindbergia, 2001, 26(2):97-104.

    [52]

    Désamoré A, Laenen B, Stech M. How do temperate bryophytes face the challenge of a changing environment? Lessons from the past and predictions for the future[J]. Global Change Biology, 2012, 18(9):2915-2924.

    [53] 卞娟娟,郝志新,郑景云,葛全胜, 易云鹤. 1951-2010年中国主要气候划界线的移动[J]. 地理研究, 2013, 32(7):1179-1187.

    Bian JJ, Hao ZX, Zheng JY. Ge QS, Yi YH. The shift on boundary of climate regionalization in China from 1951 to 2010[J]. Geographical Research, 2013, 32(7):1179-1187.

    [54] 徐贵青,魏文寿. 新疆气候变化及其对生态环境的影响[J]. 干旱区地理, 2004, 27(1):14-18.

    Xu GQ, Wei WS. Climate change of Xinjiang and its impact on eco-environment[J]. Arid Land Geography, 2004, 27(1):14-18.

    [55] 商沙沙,廉丽姝,马婷,张琨,韩拓. 近54a中国西北地区气温和降水的时空变化特征[J]. 干旱区研究, 2018, 35(1):68-76.

    Shang SS, Lian LZ, Ma T, Zhang K, Han T. Spatiotemporal variation of temperature and precipitation in northwest China in recent 54 years[J]. Arid Zone Research, 2018, 35(1):68-76.

    [56] 贺普云,张明军,王鹏,辛宏, 黄小燕. 新疆气候变化研究进展[J]. 干旱区研究,2011,28(3):499-508.

    He PY, Zhang MJ, Wang P, Xin H, Huang XY. New progress of the study on climate in Xinjiang[J]. Arid Zone Research, 2011, 28(3):499-508.

    [57] 胡汝骥,攀自立,王亚俊. 近50a新疆气候变化对环境影响评估[J]. 干旱区地理,2001,24(2):97-103.

    Hu RJ, Pan ZL, Wang YJ. Assessment about the impact of climate change on environment in Xinjiang since recent 50 years[J]. Arid Land Geography, 2001, 24(2):97-103.

    [58] 袁亮,吴烨,叶小芳,古丽格娜·海力力,冯俊, 王秀玲. 近52a区域气候变化对濒危物种北鲵Ranodon sibiricus潜在影响分析[J]. 干旱区地理, 2016, 39(1):58-66.

    Yuan L, Wu Y, Ye XF, Guligena H, Feng J, Wang XL. Potential impact of regional climate change on endangered species Ranodon sibiricus in China over the past 52 years[J]. Arid Land Geography, 2016, 39(1):58-66.

    [59]

    Graham A. The current status of the legume fossil record in the Caribbean region[C]//Herendeen PS, Dilcher DL. Advance in legume systematics, Part 4. The fossil records. London:Kew Publishing, 1992:161-167.

  • 期刊类型引用(10)

    1. 林协全,王宁,汪其双,陈春锦,刘锦航,邹双全,邹小兴. 福建金线莲的环境因子分析及生境适宜性评价. 山东农业大学学报(自然科学版). 2023(02): 201-207 . 百度学术
    2. 林志强,马铁成. 新疆灌溉定额空间分布规律浅析. 水资源开发与管理. 2023(09): 69-74 . 百度学术
    3. 艾拉努尔·卡哈尔,王鹏军,逯永满,袁祯燕,买买提明·苏来曼. 基于MaxEnt生态位模型预测木灵藓科三属植物在新疆的潜在分布区. 华中师范大学学报(自然科学版). 2022(03): 487-496+540 . 百度学术
    4. 李雪,高广磊,孙桂丽,史浩伯,赵芳芳,马龙. 基于MaxEnt预测梭梭和白梭梭在新疆的潜在适生区. 西部林业科学. 2021(01): 145-152 . 百度学术
    5. 祖丽米热·买买提依明,维尼拉·伊利哈尔,艾拉努尔·卡哈尔,吾热古丽·艾买提,买买提明·苏来曼,刘永英. 基于最大熵模型的真藓属植物在新疆的潜在分布预测. 森林工程. 2021(04): 1-10+21 . 百度学术
    6. 古丽妮尕尔·穆太力普,夏尤普·玉苏甫,袁祯燕,买买提明·苏来曼. 阿尔金山国家级自然保护区的对齿藓属(Didymodon Hedw.)植物调查. 东北林业大学学报. 2020(01): 34-43 . 百度学术
    7. 张梅,禄彩丽,魏喜喜,马珊,刘伟峰,宋健,彭瑞,李建贵. 基于MaxEnt模型新疆枣潜在适生区预测. 经济林研究. 2020(01): 152-161 . 百度学术
    8. 周亚东,Mwangi Brian Njoroge,Ndungu John Mbari,王生位,胡光万,王青锋. 基于MaxEnt模型模拟肯尼亚茜草科河骨木属植物的潜在分布及其在植物志中的应用初探(英文). 植物科学学报. 2020(05): 636-643 . 本站查看
    9. 杨冬臣,王佳颖,李静,杨一洲,张金林. 基于Maxent生态位模型的外来入侵植物刺果瓜在我国的适生区预测. 河北农业大学学报. 2019(03): 45-50 . 百度学术
    10. 赵儒楠,何倩倩,褚晓洁,鲁志强,祝遵凌. 气候变化下千金榆在我国潜在分布区预测. 应用生态学报. 2019(11): 3833-3843 . 百度学术

    其他类型引用(15)

计量
  • 文章访问数:  964
  • HTML全文浏览量:  1
  • PDF下载量:  893
  • 被引次数: 25
出版历程
  • 收稿日期:  2017-12-17
  • 网络出版日期:  2022-10-31
  • 发布日期:  2018-08-27

目录

    /

    返回文章
    返回