Research methods of plant proteomics based on mass spectrometry
-
摘要: 基于质谱的植物蛋白质组学研究方法,从定性和定量蛋白质组学两个方向进行了归纳总结,并对近年来出现的靶向蛋白质组学、DIA/SWATH技术、化学蛋白质组学,以及多组学联合分析等蛋白质组学研究的新技术、新方法和新应用进行了综述。Abstract: This paper discusses the existing research methods of plant proteomics based on mass spectrometry by summarizing the qualitative and quantitative proteomics in both directions and reviewing the new technologies, methods, and applications of proteomics that have emerged in recent years, including targeted proteomics, DIA/SWATH, chemical proteomics, and multi-omics co-analysis.
-
Keywords:
- Plants /
- Mass spectrum /
- Proteomics /
- Research methods
-
-
[1] Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification[J]. Nat Biotechnol, 2008, 26(12):1367-1372.
[2] Vaudel M, Barsnes H, Berven FS, Sickmann A, Martens L. SearchGUI:An open-source graphical user interface for simultaneous OMSSA and X! Tandem searches[J]. Proteomics, 2011, 11(5):996-999.
[3] Glinski M, Weckwerth W. The role of mass spectrometry in plant systems biology[J]. Mass Spectrom Rev, 2006, 25(2):173-214.
[4] Giansanti P, Tsiatsiani L, Low TY, Heck AJ. Six alternative proteases for mass spectrometry-based proteomics beyond trypsin[J]. Nat Protoc, 2016, 11(5):993-1006.
[5] Uniprot C. UniProt:a hub for protein information[J]. Nucleic Acids Res, 2015, 43:204-212.
[6] Moradian A, Kalli A, Sweredoski MJ, Hess S. The top-down, middle-down, and bottom-up mass spectrometry approaches for characterization of histone variants and their post-translational modifications[J]. Proteomics, 2014, 14(4-5):489-497.
[7] Hummel M, Wigger T, Brockmeyer J. Characterization of mustard 2S albumin allergens by bottom-up, middle-down, and top-down proteomics:a consensus set of isoforms of Sin a 1[J]. J Proteome Res, 2015, 14(3):1547-1556.
[8] Nesvizhskii AI, Aebersold R. Interpretation of shotgun proteomic data:the protein inference problem[J]. Mol Cell Proteomics, 2005, 4(10):1419-1440.
[9] Rauniyar N, Yates JR. Isobaric labeling-based relative quantification in shotgun proteomics[J]. J Proteome Res, 2014, 13(12):5293-5309.
[10] Li YJ, Shu YW, Peng CC, Zhu L, Guo GY, et al. Absolute quantitation of isoforms of post-translationally modified proteins in transgenic organism[J]. Mol Cell Proteomics, 2012, 11(8):272-285.
[11] Stevenson SE, Mcclain S, Thelen JJ. Development of an isoform-specific tandem mass spectrometry assay for absolute quantitation of maize lipid transfer proteins[J]. J Agric Food Chem, 2015, 63(3):821-828.
[12] Zhang GA, Neubert TA. Automated comparative proteomics based on multiplex tandem mass spectrometry and stable isotope labeling[J]. Mol Cell Proteomics, 2006, 5(2):401-411.
[13] Liao LX, Song XM, Wang LC, Lü HN, Chen JF, et al. Highly selective inhibition of IMPDH2 provides the basis of antineuroinflammation therapy[J]. Proc Natl Acad Sci USA, 2017, 114(29):5986-5994.
[14] Szymanski WG, Kierszniowska S, Schulze WX. Metabolic labeling and membrane fractionation for comparative proteomic analysis of Arabidopsis thaliana suspension cell cultures[J]. J Vis Exp, 2013, 79:e50535.
[15] Guo G, Li N. Relative and accurate measurement of protein abundance using 15N stable isotope labeling in Arabidopsis (SILIA)[J]. Phytochemistry, 2011, 72(10):1028-1039.
[16] Hsu JL, Huang SY, Chow NH, Chen SH. Stable-isotope dimethyl labeling for quantitative proteomics[J]. Anal Chem, 2003, 75(24):6843-6852.
[17] Unwin RD. Quantification of proteins by iTRAQ[J]. Me-thods Mol Biol, 2010, 658:205-215.
[18] Dayon L, Sanchez JC. Relative protein quantification by MS/MS using the tandem mass tag technology[J]. Me-thods Mol Biol, 2012, 893:115-127.
[19] Schenone M, Dancik V, Wagner BK, Clemons PA. Target identification and mechanism of action in chemical biology and drug discovery[J]. Nat Chem Biol, 2013, 9(4):232-240.
[20] Wong JW, Cagney G. An overview of label-free quantitation methods in proteomics by mass spectrometry[J]. Methods Mol Biol, 2010, 604:273-283.
[21] Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, et al. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction[J]. Mol Cell Proteomics, 2014, 13(9):2513-2526.
[22] Arsova B, Zauber H, Schulze WX. Precision, proteome coverage, and dynamic range of Arabidopsis proteome profiling using 15N metabolic labeling and label-free approaches[J]. Mol Cell Proteomics, 2012, 11(9):619-628.
[23] Sun QQ, Zhang N, Wang JF, Cao YY, Li XS, et al. A label-free differential proteomics analysis reveals the effect of melatonin on promoting fruit ripening and anthocyanin accumulation upon postharvest in tomato[J]. J Pineal Res, 2016, 61(2):138-153.
[24] Ponnala L, Wang Y, Sun Q, van Wijk KJ. Correlation of mRNA and protein abundance in the developing maize leaf[J]. Plant J, 2014, 78(3):424-440.
[25] Wang YD, Wang X, Ngai SM, Wong YS. Comparative proteomics analysis of selenium responses in selenium-enriched rice grains[J]. J Proteome Res, 2013, 12(2):808-820.
[26] Harlan R, Zhang H. Targeted proteomics:a bridge between discovery and validation[J]. Expert Rev Proteomics, 2014, 11(6):657-661.
[27] Liu Y, Huttenhain R, Collins B, Aebersold R. Mass spectrometric protein maps for biomarker discovery and clinical research[J]. Expert Rev Mol Diagn, 2013, 13(8):811-825.
[28] Wu C, Shi T, Brown JN, He J, Gao Y, et al. Expediting SRM assay development for large-scale targeted proteomics experiments[J]. J Proteome Res, 2014, 13(10):4479-4487.
[29] Peterson AC, Russell JD, Bailey DJ, Westphall MS, Coon JJ. Parallel reaction monitoring for high resolution and high mass accuracy quantitative, targeted proteomics[J]. Mol Cell Proteomics, 2012, 11(11):1475-1488.
[30] Rauniyar N. Parallel reaction monitoring:a targeted expe-riment performed using high resolution and high mass accuracy mass spectrometry[J]. Int J Mol Sci, 2015, 16(12):28566-28581.
[31] Gillet LC, Navarro P, Tate S, Rost H, Selevsek N, et al. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition:a new concept for consistent and accurate proteome analysis[J]. Mol Cell Proteomics, 2012, 11(6):O111.016717.
[32] Johnson D, Boyes B, Fields T, Kopkin R, Orlando R. Optimization of data-dependent acquisition parameters for coupling high-speed separations with LC-MS/MS for protein identifications[J]. J Biomol Tech, 2013, 24(2):62-72.
[33] Schubert OT, Gillet LC, Collins BC, Navarro P, Rosenberger G, et al. Building high-quality assay libraries for targeted analysis of SWATH MS data[J]. Nat Protoc, 2015, 10(3):426-441.
[34] Collins BC, Hunter CL, Liu Y, Schilling B, Rosenberger G, et al. Multi-laboratory assessment of reproducibility, qualitative and quantitative performance of SWATH-mass spectrometry[J]. Nat Commun, 2017, 8(1):291.
[35] Rost HL, Rosenberger G, Navarro P, Gillet L, Miladinovic SM, et al. OpenSWATH enables automated, targeted analysis of data-independent acquisition MS data[J]. Nat Biotechnol, 2014, 32(3):219-223.
[36] Egertson JD, Maclean B, Johnson R, Xuan Y, Maccoss MJ. Multiplexed peptide analysis using data-independent acquisition and Skyline[J]. Nat Protoc, 2015, 10(6):887-903.
[37] Tsou CC, Avtonomov D, Larsen B, Tucholska M, Choi H, et al. DIA-Umpire:comprehensive computational framework for data-independent acquisition proteomics[J]. Nat Methods, 2015, 12(3):258-264.
[38] Bruderer R, Bernhardt OM, Gandhi T, Reiter L. High-precision iRT prediction in the targeted analysis of data-independent acquisition and its impact on identification and quantitation[J]. Proteomics, 2016, 16(15-16):2246-2256.
[39] Navarro P, Kuharev J, Gillet LC, Bernhardt OM, Maclean B, et al. A multicenter study benchmarks software tools for label-free proteome quantification[J]. Nat Biotechnol, 2016, 34(11):1130-1136.
[40] Zhu FY, Chan WL, Chen MX, Kong RP, Cai C, et al. SWATH-MS quantitative proteomic investigation reveals a role of jasmonic acid during lead response in Arabidopsis[J]. J Proteome Res, 2016, 15(10):3528-3539.
[41] Lambert JP, Ivosev G, Couzens AL, Larsen B, Taipale M, et al. Mapping differential interactomes by affinity purification coupled with data-independent mass spectrometry acquisition[J]. Nat Methods, 2013, 10(12):1239-1245.
[42] Collins BC, Gillet LC, Rosenberger G, Rost HL, Vichalkovski A, et al. Quantifying protein interaction dynamics by SWATH mass spectrometry:application to the 14-3-3 system[J]. Nat Methods, 2013, 10(12):1246-1253.
[43] Zhang H, He D, Yu J, Li M, Damaris RN, et al. Analysis of dynamic protein carbonylation in rice embryo during germination through AP-SWATH[J]. Proteomics, 2016, 16(6):989-1000.
[44] Jia H, Sun W, Li M, Zhang Z. Integrated analysis of protein abundance, transcript level, and tissue diversity to reveal developmental regulation of maize[J]. J Proteome Res, 2018, 17(2):822-833.
[45] Rodriguez-Suarez E, Whetton AD. The application of quantification techniques in proteomics for biomedical research[J]. Mass Spectrom Rev, 2013, 32(1):1-26.
[46] Schirle M, Bantscheff M, Kuster B. Mass spectrometry-based proteomics in preclinical drug discovery[J]. Chem Biol, 2012, 19(1):72-84.
[47] Molina DM, Jafari R, Ignatushchenko M, Seki T, Larsson EA, et al. Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay[J]. Science, 2013, 341(6141):84-87.
[48] Vedadi M, Niesen FH, Allali-Hassani A, Fedorov OY, Finerty PJ, et al. Chemical screening methods to identify ligands that promote protein stability, protein crystallization, and structure determination[J]. Proc Natl Acad Sci USA, 2006, 103(43):15835-15840.
[49] Savitski MM, Reinhard FB, Franken H, Werner T, Savitski MF, et al. Tracking cancer drugs in living cells by thermal profiling of the proteome[J]. Science, 2014, 346(6205):1255784.
[50] Dejonghe W, Russinova E. Plant chemical genetics:from phenotype-based screens to synthetic biology[J]. Plant Physiol, 2017, 174(1):5-20.
[51] Ye J, Zhang Z, Long H, Zhang Z, Hong Y, et al. Proteomic and phosphoproteomic analyses reveal extensive phosphorylation of regulatory proteins in developing rice anthers[J]. Plant J, 2015, 84(3):527-544.
[52] Wang K, Zhao Y, Li M, Gao F, Yang MK, et al. Analysis of phosphoproteome in rice pistil[J]. Proteomics, 2014, 14(20):2319-2334.
[53] Lü DW, Zhu GR, Zhu D, Bian YW, Liang XN, et al. Proteomic and phosphoproteomic analysis reveals the response and defense mechanism in leaves of diploid wheat T. monococcum under salt stress and recovery[J]. J Proteomics, 2016, 143:93-105.
[54] Facette MR, Shen Z, Bjornsdottir FR, Briggs SP, Smith LG. Parallel proteomic and phosphoproteomic analyses of successive stages of maize leaf development[J]. Plant Cell, 2013, 25(8):2798-2812.
[55] Zhang Z, Chen J, Lin S, Li Z, Cheng R, et al. Proteomic and phosphoproteomic determination of ABA's effects on grain-filling of Oryza sativa L. inferior spikelets[J]. Plant Sci, 2012, 185-186:259-273.
[56] Yu B, Li J, Koh J, Dufresne C, Yang N, et al. Quantitative proteomics and phosphoproteomics of sugar beet monosomic addition line M14 in response to salt stress[J]. J Proteomics, 2016, 143:286-297.
[57] Kim MS, Pinto SM, Getnet D, Nirujogi RS, Manda SS, et al. A draft map of the human proteome[J]. Nature, 2014, 509(7502):575-581.
[58] Wilhelm M, Schlegl J, Hahne H, Gholami AM, Lieberenz M, et al. Mass-spectrometry-based draft of the human proteome[J]. Nature, 2014, 509(7502):582-587.
[59] Zhang B, Wang J, Wang X, Zhu J, Liu Q, et al. Proteo-genomic characterization of human colon and rectal can-cer[J]. Nature, 2014, 513(7518):382-387.
[60] Zhang H, Liu T, Zhang Z, Payne SH, Zhang B, et al. Integrated proteogenomic characterization of human high-grade serous ovarian cancer[J]. Cell, 2016, 166(3):755-765.
[61] Baerenfaller K, Grossmann J, Grobei MA, Hull R, Hirsch-Hoffmann M, et al. Genome scale proteomics reveals Arabidopsis thaliana gene models and proteome dynamics[J]. Science, 2008, 320(5878):938-941.
[62] Marx H, Minogue CE, Jayaraman D, Richards AL, Kwiecien NW, et al. A proteomic atlas of the legume Medicago truncatula and its nitrogen-fixing endosymbiont Sinorhizobium meliloti[J]. Nat Biotechnol, 2016, 34(11):1198-1205.
[63] Walley JW, Sartor RC, Shen Z, Schmitz RJ, Wu KJ, et al. Integration of omic networks in a developmental atlas of maize[J]. Science, 2016, 353(6301):814-818.
[64] Ulrich-Merzenich G, Zeitler H, Jobst D, Panek D, Vetter H, et al. Application of the "-Omic-" technologies in phytomedicine[J]. Phytomedicine, 2007, 14(1):70-82.
[65] Shingaki-Wells RN, Huang S, Taylor NL, Carroll AJ, Zhou W, et al. Differential molecular responses of rice and wheat coleoptiles to anoxia reveal novel metabolic adaptations in amino acid metabolism for tissue tolerance[J]. Plant Physiol, 2011, 156(4):1706-1724.
[66] Boekel J, Chilton JM, Cooke IR, Horvatovich PL, Jagtap PD, et al. Multi-omic data analysis using Galaxy[J]. Nat Biotechnol, 2015, 33(2):137-139.
[67] Mcqueen P, Spicer V, Schellenberg J, Krokhin O, Sparling R, et al. Whole cell, label free protein quantitation with data independent acquisition:quantitation at the MS2 level[J]. Proteomics, 2015, 15(1):16-24.
[68] Bromilow SN, Gethings LA, Langridge JI, Shewry PR, Buckley M, et al. Comprehensive proteomic profiling of wheat gluten using a combination of data-independent and data-dependent acquisition[J]. Front Plant Sci, 2016, 7:2020.
[69] Bel MV, Diels T, Vancaester E, Kreft L, Botzki A, et al. PLAZA 4.0:an integrative resource for functional, evolutionary and comparative plant genomics[J]. Nucleic Acids Res, 2018, 46(D1):1190-1196.
[70] Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, et al. Phytozome:a comparative platform for green plant genomics[J]. Nucleic Acids Res, 2012, 40:1178-1186.
[71] Bolser D, Staines DM, Pritchard E, Kersey P. Ensembl Plants:integrating tools for visualizing, mining, and analyzing plant genomics data[J]. Methods Mol Biol, 2016, 1374:115-140.
[72] Eldakak M, Milad SI, Nawar AI, Rohila JS. Proteomics:a biotechnology tool for crop improvement[J]. Front Plant Sci, 2013, 4:35.
-
期刊类型引用(10)
1. 裴会敏,王芬,木仁,李国栋,喻佩. 都匀毛尖茶树蛋白质组分析. 种子. 2023(04): 56-63 . 百度学术
2. 穆琪,那冬晨. 用iTRAQ蛋白质组学技术分析2种火龙果籽白蛋白. 林业科技通讯. 2023(07): 4-7 . 百度学术
3. 黄琦,程建峰,朱卫丰,褚怀亮,赵文峰,葛菲,吴波,丁立军,张建华,余聪. 基于DIA LC-MS的高淀粉型与低淀粉型粉葛叶片的定量蛋白质组学差异. 安徽农业科学. 2023(14): 168-177 . 百度学术
4. 王丽莉,马伟超,安小娟,邓霏. 黄瓜果实弯曲特性差异蛋白质组学研究. 甘肃农业大学学报. 2023(04): 170-182 . 百度学术
5. 王溢,戴凡炜,王振江,罗国庆,唐翠明. 桑树蛋白质组学研究进展. 蚕业科学. 2020(01): 112-118 . 百度学术
6. Tan Jia-li,Du Chuan-ying,Wang Jian,Ni He-jia,Gao Ji-guo,Li Hai-tao. Study on Relationship Between Differential Proteins of Bacillus cereus LBR-4 and Its Salt Tolerance Mechanism. Journal of Northeast Agricultural University(English Edition). 2020(03): 53-62 . 必应学术
7. 朱崇文,戴林建,肖泽凡,符建国,钟军. 低钾胁迫下高钾烤烟苗期根系差异表达蛋白分析. 中国烟草科学. 2019(01): 58-67 . 百度学术
8. 肖泽凡,朱崇文,戴林建,宋浩,钟军. 基于Label-free技术的不同钾浓度下烟草苗期叶片差异蛋白质组学研究. 河南农业科学. 2019(05): 37-42+77 . 百度学术
9. 朱崇文,戴林建,肖泽凡,钟军. 低钾胁迫下烤烟苗期叶片的差异蛋白及其生物信息学分析. 中国烟草学报. 2019(03): 76-83 . 百度学术
10. 余萍,董超,姚春馨,丁玉梅,周晓罡. 基于Label free定量蛋白质组学技术对马铃薯晚疫病菌氮饥饿条件下分泌蛋白组初步分析. 西南农业学报. 2019(10): 2324-2329 . 百度学术
其他类型引用(23)
计量
- 文章访问数: 1036
- HTML全文浏览量: 40
- PDF下载量: 1323
- 被引次数: 33