Assimilation of nitrate-nitrogen and carbon dioxide by Scenedesmus acuminatus under different initial nitrogen concentrations
-
摘要: 尖状栅藻(Scenedesmus acuminatus(Lagerheim) Chodat)是一种高产油淡水单细胞绿藻,该藻在较低氮素浓度下能显著提高产油效率,是生产生物柴油的理想藻株。本研究以尖状栅藻为实验材料,通过测定藻细胞硝酸还原酶和Rubisco活性、碳氮元素含量和培养液硝酸根离子浓度,分析18.0、9.0、6.0、3.6 mmol·L-1初始氮浓度下尖状栅藻的碳氮同化特征和时相变化规律。结果显示,18.0 mmol·L-1组尖状栅藻细胞密度最高,为7.9×107 cells·mL-1,硝酸还原酶和Rubisco的活性高,且持续时间长。培养液中产生的NO2-随初始氮浓度的升高而增多,18.0 mmol·L-1组至培养期结束仍保持相对较高的NO2-水平。4个实验组(初始氮从高到低)培养10 d藻细胞的氮含量依次为7.2%、4.1%、2.8%和1.9% DW,碳含量为46%、52%、54.5%和57.4% DW,细胞的C/N摩尔比值为:8.0、16.7、24.3和35.2。研究结果表明初始氮浓度影响尖状栅藻的生长繁殖,藻细胞的碳氮同化相互影响,适宜的低氮浓度可促进藻细胞碳固定。
-
关键词:
- 尖状栅藻 /
- 硝酸还原酶 /
- 1,5-二磷酸核酮糖羧化酶/加氧酶 /
- 碳氮同化 /
- 生物固碳
Abstract: Scenedesmus acuminatus is a unicellular freshwater green microalga that can accumulate high lipid content.Lower nitrogen concentrations can evidently increase lipid accumulation in S.acuminatus,which makes it a promising source for biodiesel production.In this study,the characteristics and phase changes of carbon and nitrogen assimilation of S.acuminatus were studied under different initial nitrogen concentrations (18.0,9.0,6.0,and 3.6 mmol·L-1) by measuring the activities of nitrate reductase and Rubisco,the intracellular C and N contents,and the NO3- concentration in media.Results showed that S.acuminatus achieved the highest cell density,7.9×107 cells·mL-1 in the 18.0 mmol·L-1 group.The cellular nitrate reductase and Rubisco activities were also the highest and lasted longest in this group.With the increase of initial nitrogen concentration,the production of NO2- increased in the medium,whereas the 18.0 mmol·L-1 group maintained a relatively high NO2- level at the end of the culture period.After 10 d of cultivation,the nitrogen contents in the four experimental groups (from 18.0 to 3.6) were 7.2%,4.1%,2.8%,and 1.9%,respectively,the carbon contents were 46%,52%,54.5%,and 57.4%,respectively,and the molar C/N ratios were 8.0,16.7,24.3,and 35.2,respectively.In conclusion,initial nitrogen concentration had significant impact on the growth of S.acuminatus.Furthermore,the carbon and nitrogen assimilations of the algae interacted with each other,and the fixation of carbon in S.acuminatus was promoted under low nitrogen concentrations. -
-
[1] 何思思, 高保燕, 雷学青, 万凌琳,李爱芬,张成武. 初始硝酸钠浓度对魏氏真眼点藻的生长、形态和油脂积累的影响[J]. 水生生物学报, 2015, 39(3):574-582. He SS, Gao BY, Lei XQ, Wan LL, Li AF, Zhang CW. Effects of initial nitrogen supply on the growth, morphology and lipid accumulation of oleaginous microalga Eustigmatos vischeri(Eustigmatos ophyceae)[J]. Acta Hydrobiologica Sinica, 2015, 39(3):574-582.
[2] Gruber-Brunhumer M, Nussbaumer M, Jerney J, Ludwig I, Zohar E, Lang I, Bochmann G, Schagerl M, Obbard JP, Fuchs W, Drosg B. Two-stage cultivation of N-rich and N-deprived Acutodesmus obliquus biomass:Influence of cultivation and dewatering methods on microalgal biomass used in anaerobic digestion[J]. Algal Res, 2016, 17:105-112.
[3] Mata TM, Martins AA, Caetano NS. Microalgae for biodiesel production and other applications:a review[J]. Renew Sust Energ Rev, 2010, 14(1):217-232.
[4] Sharma KK, Schuhmann H, Schenk PM. High lipid induction in microalgae for biodiesel production[J]. Energies, 2012, 5(5):1532-1553.
[5] Adams C, Godfrey V, Wahlen B, Seefeldt L, Bugbee B. Understanding precision nitrogen stress to optimize the growth and lipid content trade off in oleaginous green microalgae[J]. Bioresource Techn, 2013, 131:188-194.
[6] Xin L, Hong-ying H, Jia Y. Lipid accumulation and nutrient removal properties of a newly isolated freshwater microalga, Scenedesmussp. LX1, growing in secondary effluent[J]. New Biotechnol, 2010, 27(1):59-63.
[7] Uslu L, Içik O, Koç K, Göksan T. The effects of nitrogen deficiencies on the lipid and protein contents of Spirulina platensis[J]. Afr J Biotechnol, 2013, 10(3):386-389.
[8] 王立柱, 温皓程, 邹渝, 周稳稳, 谢通慧, 张永奎. 产油微藻的分离、筛选及自养培养氮源、碳源的优化[J]. 微生物学通报, 2010, 37(3):336-341. Wang LZ, Wen HC, Zou Y, Zhou WW, Xie TH, Zhang YK. Isolation, selection of microalgae for lipid production and optimilization of its nitrogen resourse and carbon resource in autotrophic culture[J]. Microbiology China, 2010, 37(3):336-341.
[9] 陈小妹. 氮源初始供应量和营养方式对尖状栅藻生长和油脂积累的影响[D]. 广州:暨南大学, 2013. Chen XM. Effects of the initial supplies of nitrogen sources and trophic modes on the growth and lipids accumulation of Scenedesmus acuminatu[D]. Guanzhou:Jinan University, 2013.
[10] 肖焱波, 李文学, 段宗颜, 张福锁. 植物对硝态氮的吸收及其调控[J]. 中国农业科技导报, 2002, 4(2):56-59. Xiao YB, Li WX, Duan ZY, Zhang FS. Uptake and Regulation of Nitrate in plants[J]. Journal of Agricultural Science and Technology, 2002, 4(2):56-59.
[11] 汪亚俊, 孙明哲, 李爱芬, 张成武. 不同氮素水平对产油尖状栅藻生长及光合生理的影响[J]. 中国生物工程杂志, 2014, 34(12):51-58. Wang YJ, Sun MZ, Li AF, Zhang CW. Effects of nitrogen concentration on the growth and photosynthetic physiology of Scenedesmus acuminatu[J]. Journal of Chinese Biotechnology, 2014, 34(12):51-58.
[12] Gerard VA, Driscoll T. A spectrophotometric assay for Rubisco activity:Application to the kelp Laminaria saccharinaand implications for radiometric assays[J]. J Phycol, 1996, 32(5):880-884.
[13] 陈为钧, 顾月华. Rubisco的研究进展[J]. 生物化学与生物物理进展, 1999, 26(5):433-436. Chen WJ, Gu YH. Advance of Ribulose-1,5-[BFY]bisphosphate carboxylase/oxygenase (Rubisco)[J]. Progress in Biochemistry and Biophysics, 1999, 26(5):433-436.
[14] 宋松泉, 王永锐, 傅家瑞. 高等植物中硝酸还原酶的研究进展[J]. 作物杂志, 1993(4):32-35. Song SQ, Wang YR, Fu JR. Research progress of nitrate reductase in higher plants[J]. Crops, 1993(4):32-35.
[15] 王金花, 唐洪杰, 杨茹君, 王修林. 氮磷营养盐对中肋骨条藻生长及硝酸还原酶活性的影响[J]. 海洋科学, 2008, 32(12):64-68. Wang JH, Tang HJ, Yang RJ, Wang XL. The effects of nitrate and phosphate on the growth and nitrate reductase activity of Skeletonema costatum[J]. Marine Sciences, 2008, 32(12):64-68.
[16] 吕嘉扬, 王大志, 洪华生, 黄邦钦. 两种硝酸盐浓度下威氏海链藻和盐生杜氏藻硝酸还原酶活力研究[J]. 集美大学学报:自然科学版, 2004, 9(1):6-10. Lu JY, Wang DZ, Hong HS, Huang BQ. Comparative studies on nitrate reductase activity of Thalassiosira weissflogiiand Dunaliella salinacultured in two nitrate concentrations[J]. Journal of Jimei University:Natural Science Edition, 2004, 9(1):6-10.
[17] 李亚军, 费小雯, 邓晓东. 氮元素缺乏对微藻氮代谢相关基因表达的影响[J]. 热带作物学报, 2011, 32(8):1512-1517. Li YJ, Fei XW, Deng XD. Effects of nitrogen starvation on the expression of genes involved in nitrogen assimilation[J]. Chinese Journal of Tropical Crops, 2011, 32(8):1512-1517.
[18] Lartigue J, Sherman TD. Response of Enteromorphasp. (Chlorophyceae) to a nitrate pulse:nitrate uptake, inorganic nitrogen storage and nitrate reductase activity[J]. Mar Ecol Prog Ser, 2005, 292:147-157.
[19] 陈卫民. 亚硝酸盐对铜绿微囊藻生理特性的影响[D]. 天津:南开大学, 2009. Chen WM. Effects of Nitrite on the physiological charac-teristics of Microcystis aeruginosa[D]. Tianjing:Nankai University, 2009. [20] Rockel P, Strube F, Rockel A, Wildt JM, Kaiser W. Regulation of nitric oxide (NO) production by plant nitrate reductase in vivoand in vitro[J]. J Exp Bot, 2002, 53(366):103-110.
[21] Kopyra M, Gwóźdź EA. Nitric oxide stimulates seed germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of Lupinus luteus[J]. Plant Physiol Bioch, 2003, 41(11):1011-1017.
[22] 胡晗华, 高坤山. 培养基中NO3-浓度对海生椭球藻无机碳利用的影响[C]//中国藻类学会第十一次学术讨论会论文摘要集. 青岛:中国海洋湖沼学会, 2001. Hu HH, Gao KS. Effects of NO3- concentration on the utilization of inorganic carbon in marine Nannochloropsis maritima[C]. Summary of the 11th Symposium of Chinese Algae Society. Qingdao:Chinese Society for Oceanology and Limnology, 2001. [23] 吴琼芳, 张莹, 罗舒怀, 李爱芬, 张成武. 氮限制对普通小球藻积累油脂过程中生化组成与光合生理的影响[J]. 植物科学学报, 2016, 34(2):280-288. Wu QF, Zhang Y, Luo SH, Li AF, Zhang CW. Effects of nitrogen limitation on biochemical composition and photosynthetic physiology during lipid accumulation in Chlorella vulgarisBeijierineck[J]. Plant Science Journal, 2016, 34(2):280-288.
[24] Andria JR, Vergara JJ, Perez-Llorens JL. Biochemical responses and photosynthetic performance of Gracilariasp. (Rhodophyta) from Cádiz, Spain, cultured under diffe-rent inorganic carbon and nitrogen levels[J]. Eur J Phycol, 1999, 34(5):497-504
[25] 夏建荣, 高坤山. CO2浓度变化对淡水绿藻碳酸酐酶和硝酸还原酶活性的影响[C]//中国藻类学会第十一次学术讨论会论文摘要集. 青岛:中国海洋湖沼学会, 2001. Xia JR, Gao KS. Effects of CO2 concentration on the activity of carbonic anhydrase and nitrate reductase in freshwater[C]//Summary of the 11th Symposium of Chinese Algae Society. Qingdao:Chinese Society for Oceanology and Limnology, 2001.
[26] Zou D, Gao K, Ruan Z. Effects of elevated CO2 concentration on photosynthesis and nutrients uptake of Ulva lactuca[J]. J Ocean Unive Qingdao, 2000, 31(6):877-882
[27] Chen W, Zhang Q, Dai S. Effects of nitrate on intracellular nitrite and growth of Microcystis aeruginosa[J]. J Appl Phycol, 2009, 21(6):701-706.
[28] 陈卫民, 戴树桂, 张清敏. 水环境中亚硝酸盐聚集的原因及其对动植物的影响[J]. 安全与环境学报, 2011, 11(6):9-15. Chen WM, Dai SG, Zhang MQ. Cause of the increased nitrite concentrations in aquatic environments and their effects on the plant and animal survival[J]. Journal of Safety and Environment, 2011, 11(6):9-15.
[29] Purczeld P, Chon CJ, Portis AR, Heldt HW, Heber U. The mechanism of the control of carbon fixation by the pH in the chloroplast stroma. Studies with nitrite-mediated proton transfer across the envelope[J]. BBA-Bioenergetics, 1978, 501(3):488-498.
[30] 费小雯, 蔡佳佳, 邓晓东. 营养限制对Heynigia ripariaCEl4-2油脂积累的影响[J]. 安徽农业科学, 2012, 40(34):16521-16524. Fei XW, Cai JJ, Deng XD. Effects of nutrient elements deficiency on lipid accumulation of Heynigia ripariaCE14-2[J]. Journal of Anhui Agricultural Sciences, 2012, 40(34):16521-16524.
[31] 郑集, 陈钧辉. 普通生物化学[M]. 4版. 北京:高等教育出版社, 2007. Zheng J, Chen JH. General Biochemistry[M]. 4th ed. Beijing:China Higher Education Press, 2007.
计量
- 文章访问数: 869
- HTML全文浏览量: 1
- PDF下载量: 1092