高级检索+

西藏天然草地植物功能群分布的初步研究

姜炎彬, 张扬建

姜炎彬, 张扬建. 西藏天然草地植物功能群分布的初步研究[J]. 植物科学学报, 2016, 34(2): 220-229. DOI: 10.11913/PSJ.2095-0837.2016.20220
引用本文: 姜炎彬, 张扬建. 西藏天然草地植物功能群分布的初步研究[J]. 植物科学学报, 2016, 34(2): 220-229. DOI: 10.11913/PSJ.2095-0837.2016.20220
JIANG Yan-Bin, ZHANG Yang-Jian. Distribution of Plant Functional Groups in the Natural Grasslands of Xizang, China[J]. Plant Science Journal, 2016, 34(2): 220-229. DOI: 10.11913/PSJ.2095-0837.2016.20220
Citation: JIANG Yan-Bin, ZHANG Yang-Jian. Distribution of Plant Functional Groups in the Natural Grasslands of Xizang, China[J]. Plant Science Journal, 2016, 34(2): 220-229. DOI: 10.11913/PSJ.2095-0837.2016.20220

西藏天然草地植物功能群分布的初步研究

基金项目: 

国家自然科学基金项目(31300356)

中央高校基本科研业务费专项基金(2662014BQ025)

详细信息
    作者简介:

    姜炎彬(1984-),女,讲师,研究方向为植物生态学(E-mail:jiangyanbin@mail.hzau.edu.cn)。

    通讯作者:

    张扬建.E-mail:zhangyj@igsnrr.ac.cn

  • 中图分类号: Q948

Distribution of Plant Functional Groups in the Natural Grasslands of Xizang, China

Funds: 

This work was supported by grants from the National Natural Science Foundation of China(31300356) and Fundamental Research Funds for the Central Universities(2662014BQ025).

undefined

  • 摘要: 天然草地是西藏最主要的植被类型,其植物种类组成复杂多样、结构特殊,但目前对该地区的物种分布研究还比较薄弱。本文根据野外调查资料以及通过文献收集的物种分布点数据,选取了包括气候、地形、植被和土壤等19种环境因子,利用物种分布模型Maxent模拟了西藏天然草地4种植物功能群的分布。结果表明:植物功能群的分布范围与模型模拟时所采用的分布点具有一定关联,如在没有物种分布点的西藏西北部(羌塘高原的无人区),几乎没有预测到物种的分布;气候因子对4种植物功能群的分布都具有重要作用,尤其是降水量的季节性变化、最干旱月的降水量、年平均温度、最冷月温度和最暖月温度,这些气候因子反映了该研究地区的降水和温度变化范围,是调控生态系统过程的关键因子;海拔也是重要影响因子之一,不仅直接影响着温度的变化,还局限了一些温度敏感性物种的分布。本研究结果为增强对该地区资源分布的了解提供了方法参考,也为草地保护和畜牧业的发展提供了依据。
    Abstract: Grassland is a predominant vegetation type in Xizang and is characterized by complex composition and structure. Studies on species distribution in this region are limited. Integrating species presence data from field surveys and literature, with 19 environmental factors, including categories of climate, topography, vegetation and soil, we modeled the distribution of four plant functional groups (PFGs) using Maxent. Results showed that the simulated distribution ranges of the PFGs highly corresponded with the in-situ investigation results. Precipitation seasonality, precipitation of the driest month, annual mean temperature, and temperature of the coldest and warmest months played important roles in determining the distribution of the four PFGs. These climatic factors, which reflect the precipitation and temperature ranges of the study area and are key factors regulating ecosystem processes, significantly influenced the distribution ranges of the four PFGs. Furthermore, elevation, which directly affects temperature and limits the distribution of some temperature-sensitive species, was also important to the distribution of PFGs. This study will assist in clarifying resource distribution, and can provide a valuable theoretical basis for the ecological protection of grassland and sustainable development of the local economy in Xizang.
  • [1] 张金屯.数量生态学[M]. 2版.北京:科学出版社, 2011.

    Zhang JT. Quantitative Ecology[M]. 2nd ed.Beijing:Science Press, 2011.

    [2] 中国科学院国家计划委员会自然资源综合考察委员会. 中国自然资源手册[M]. 北京:科学出版社, 1990.

    National Planning Commission for Integrated Survey of Natural Resources, Chinese Academy of Sciences. China Natural Resources Handbook[M]. Beijing:Science Press, 1990.

    [3] 泽仁旺姆, 于顺利, 尼珍, 郭尚磊. 独一味等13个藏药植物种在西藏的分布和资源量调查[J]. 北京农业,2010(12):56-60.

    Zeren WM, Yu SL, Ni Z, Guo SL. The investigation on distribution and resource amount of 13 Tibetan medicine plants in Tibet[J].Beijing Agriculture, 2010(12):56-60.

    [4] 于顺利, 蒋思萍, 阚瑗珂, 李晖, 王立辉, 徐爱国, 卜海涛. 藏菠萝花在西藏的生态分布调查和资源量估测[J]. 北京农业, 2012(15):74-77.

    Yu SL, Jiang SP, Kan AK, Li H, Wang LH, Xu AG, Bu HT. Investigation of distribution and resource storage amount estimation of Incarvillea compacta:one of the famous Tibetan medicine plants[J]. Beijing Agriculture, 2012(15):74-77.

    [5] 李晖, 于顺利, 央金卓嘎. 西藏红景天植物的生态分布调查与资源的合理保护[J]. 资源开发与市场, 2011, 27(6):535-538.

    Li H, Yu SL, Yangjin ZG. Investigation on ecological distribution of Rhodiola L. in Xizang and its reasonable protection[J]. Resource Development & Market, 2011, 27(6):535-538.

    [6] 佘永新, 纪素玲, 田发益. 西藏天然草地主要有毒植物及其防除[J]. 草业科学, 1997, 14(2):31-33.

    She YX,Ji SL,Tian FY.The main poisonous plants and their control in the natural grassland of Tibet[J]. Pratacultural Science, 1997, 14(2):31-33.

    [7] 何永涛, 石培礼, 闫巍. 高山垫状植物的生态系统工程师效应研究进展[J]. 生态学杂志. 2010, 29(6):1221-1227.

    He YT, Shi PL, Yan W. Ecosystem engineering of cushion plants in alpine plant community[J]. Chinese Journal of Ecology, 2010, 29(6):1221-1227.

    [8] 李勃生, 王金亭, 李世英. 西藏座垫植物的区系特点及地理分布[J]. 山地研究,1987, 5(1):14-20.

    Li BS, Wang JT, Li SY. The floristic features and geographic distribution of the cushion plant in Xizang[J].Mountain Research, 1987, 5(1):14-20.

    [9]

    Noble IR, Gitay H. A functional classification for predicting the dynamics of landscapes[J]. J Veg Sci, 1996, 7(3):329-336.

    [10]

    Sra D, Marcelo C. Plant functional types and ecosystem function in relation to global change[J]. J Veg Sci, 1997, 8(4):463-474.

    [11]

    Hector A, Schmid B, Beierkuhnlein C, Caldeira MC, Diemer M, et al. Plant diversity and productivity experiments in European grasslands[J]. Science, 1999, 286(5442):1123-1127.

    [12] 赵建中, 彭敏, 刘伟, 叶润蓉, 周玉碧. 矮嵩草草甸不同功能群主要植物种生长特征与地表温度的相关性分析[J]. 西北植物学报,2012, 32(3):559-565.

    Zhao JZ, Peng M, Liu W, Ye RR, Zhou YB. Correlation between growing characters of main species belonging to different functional groups and ground temperature in Kobresia meadow[J]. Acta Botanica Boreali-Occidentalia Sinica, 2012, (3):559-565.

    [13] 王长庭, 龙瑞军, 丁路明. 高寒草甸不同草地类型功能群多样性及组成对植物群落生产力的影响[J]. 生物多样性,2001, 12(4):403-409.

    Wang CT, Long RJ, Ding LM. The effects of differences in functional group diversity and composition on plant community productivity in four types of alpine meadow communities[J]. Biodiversity Science, 2001, 12(4):403-409.

    [14] 李明森. 藏北高原草地资源合理利用[J]. 自然资源学报,2000, 15(4):335-339.

    Li MS. Rational exploitation of grassland resources in the Northern Xizang Plateau[J]. Journal of Natural Resources, 2000, 15(4):335-339.

    [15] 李国庆, 刘长成, 刘玉国, 杨军, 张新时, 郭柯. 物种分布模型理论研究进展[J]. 生态学报, 2013, 33(16):4827-4835.

    Li GQ, Liu CC, Liu YG, Yang J, Zhang XS, Guo K. Advances in theoretical issues of species distribution models[J]. Acta Ecologica Sinica, 2013, 33(16):4827-4835.

    [16]

    Phillips SJ, Anderson RP, Schapire RE. Maximum entropy modeling of species geographic distributions[J]. Ecol Model, 2006, 190(3/4):231-259.

    [17]

    Loiselle BA, Jorgensen PM, Consiglio T, Jimenez I, Blake JG, Lohmann LG, Montiel OM. Predicting species distributions from herbarium collections:does climate bias in collection sampling influence model outcomes?[J].J Biogeogr, 2008, 35(1):105-116.

    [18]

    Pearson MM, Mobley HLT. The typeⅢ secretion system of Proteus mirabilis HI4320 does not contribute to virulence in the mouse model of ascending urinary tract infection[J]. J Med Microbiol, 2007, 56(10):1277-1283.

    [19] 于晶, 唐艳雪, 郭水良. 基于GIS和MaxEnt比较中国砂藓属与紫萼藓属植物地理分布[J]. 植物科学学报, 2012, 30(5):443-458.

    Yu J, Tang YX, Guo SL. Comparison of the geographical distribution of Racomitrium and Grimmia in China using ArcGIS and MaxEnt software[J]. Plant Science Journal, 2012,30(5):443-458.

    [20] 段敏杰, 高清竹, 郭亚奇, 万运帆, 李玉娥, 干珠扎布, 旦久罗布, 韦兰亭, 西饶卓玛. 藏北高寒草地植物群落物种多样性沿海拔梯度的分布格局[J]. 草业科学,2011, 28(10):1845-1850.

    Duan MJ, Gao QZ, Guo YQ,Wan YF, Li YE, Ganzhu ZB, Danjiu LB, Wei LT, Xirao ZM. Species diversity distribution pattern of alpine grassland communities along an altitudinal gradient in the Northern Tibet[J].Pratacultural Science, 2011, 28(10):1845-1850.

    [21] 吕新苗, 康世昌, 朱立平, 张拥军, 韩文武. 西藏纳木错植物物候及其对气候的响应[J]. 山地学报, 2009, 27(6):648-654.

    Lv XM, Kang SC, Zhu LP, Zhang YJ, Han WW. Phenology characters of dominant plants in the Nam Co basin and its response to climate, Tibet[J]. Journal of Mountain Science, 2009, 27(6):648-654.

    [22] 马超, 李辉, 卜海涛, 陈彬, 蒋思萍. 西藏当雄草原的植被调查与毒草治理[J]. 西藏科技, 2009(1):68-70.

    Ma C, Li H, Bo HT, Chen B, Jiang SP. Investigation and control of poisonous plants in the grassland of Dangxiong, Xizang[J]. Xizang Science and Technology, 2009(1):68-70.

    [23] 魏兴琥, 李森, 杨萍, 董玉祥, 张春来. 藏北高山嵩草草甸植被和多样性在沙漠化过程中的变化[J]. 中国沙漠, 2007, 27(5):750-757.

    Wei XH, Li S, Yang P, Dong YX, Zhang CL. Changes of vegetation and diversity of alpine Kobresia (Kobresia pygmaea) steppe meadow in desertification process in Northern Tibet Plateau[J]. Journal of Desert Research, 2007, 27(5):750-757.

    [24] 赵景学, 曲广鹏, 多吉顿珠, 尚占环. 藏北高寒植被群落物种多样性与土壤环境因子的关系[J]. 干旱区资源与环境, 2011, 25(6):105-108.

    Zhao JX, Qu GP, Duoji DZ,Shang ZH. Relationship between species diversity and soil factors of alpine grasslands in north Tibet[J]. Journal of Arid Land Resources and Environment, 2011, 25(6):105-108.

    [25] 周金星, 易作明, 李冬雪, 高甲荣. 青藏铁路沿线原生植被多样性分布格局研究[J]. 水土保持学报, 2007, 21(3):173-178.

    Zhou JX, Yi ZM, Li DX,Gao JR. Distribution patterns of species diversity of natural vegetation along Qinghai-Tibetan Railway[J]. Journal of Soil and Water Conservation, 2007, 21(3):173-178.

    [26] 胡梦瑶, 张林, 罗天祥, 沈维. 西藏紫花针茅叶功能性状沿降水梯度的变化[J]. 植物生态学报, 2012, 36(2):136-143.

    Hu MY, Zhang L, Luo TX, Shen W. Variations in leaf functional traits of Stipa purpurea along a rainfall gradient in Xizang, China[J]. Chinese Journal of Plant Ecology, 2012, 36(2):136-143.

    [27] 王建, 王光鹏, 斯贵才, 沈妙根, 张更新. 青藏公路沿线植被多样性特征及其与环境因子的关系[J]. 草业科学, 2013, 30(9):1320-1329.

    Wang J, Wang GP, Si GC, Shen MG, Zhang GX. Vegetation species diversity characteristics in relation to environmental factors along Qinghai-Tibetan Highway[J].Pratacultural Science, 2013, 30(9):1320-1329.

    [28]

    Hutchinson MF.ANUSPLIN Version 4.3. Centre for Resource and Environmental Studies[M]. Canberra:Australian National University, 2004.

    [29]

    Trabucco A, Zomer R. Global Aridity Index (Global-Aridity)and Global Potential Evapo-Transpiration (Global-PET) Geospatial Database[DB/OL].http://www.csi.cgiar.org, 2009.

    [30]

    Gamon JA, Field CB, Goulden ML, Griffin KL, Hartley AE, Joel G, Penuelas J, Valentini R. Relationships between NDVI, canopy structure, and photosynthesis in 3 Californian vegetation types[J]. Ecol Appl, 1995, 5(1):28-41.

    [31]

    Carlson TN, Ripley DA. On the relation between NDVI, fractional vegetation cover, and leaf area index[J]. Remote Sens Environ,1997, 62(3):241-252.

    [32]

    Lenney MP, Woodcock CE, Collins JB, Hamdi H. The status of agricultural lands in Egypt:The use of multitemporal NDVI features derived from landsat TM[J]. Remote Sens Environ,1996, 56(1):8-20.

    [33]

    Wu W, Yang P, Tang H, Zhou Q, Chen Z, Shibasaki R. Characterizing spatial patterns of phenology in cropland of China based on remotely sensed data[J]. Agricul Sci China, 2010, 9(1):101-112.

    [34]

    Vancutsem C, Pekel JF, Evrard C, Malaisse F, Defourny P. Mapping and characterizing the vegetation types of the Democratic Republic of Congo using SPOT VEGETATION time series[J]. Int J Appl Earth Obs,2009, 11(1):62-76.

    [35]

    Gao BC. NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space[J]. Remote Sens Environ, 1996, 58(3):257-266.

    [36]

    Pearce J, Ferrier S. Evaluating the predictive performance of habitat models developed using logistic regression[J]. Ecol Model, 2000, 133(3):225-245.

    [37]

    Prates-Clark CD, Saatchi SS, Agosti D. Predicting geographical distribution models of high-value timber trees in the Amazon basin using remotely sensed data[J]. Ecol Model, 2008, 211(3-4):309-323.

    [38]

    Wisz MS, Hijmans RJ, Li J, Peterson AT, Graham CH, Guisan A, Distribut NPS. Effects of sample size on the performance of species distribution models[J]. Divers Distribs, 2008, 14(5):763-773.

    [39]

    Stockwell DRB, Peterson AT. Effects of sample size on accuracy of species distribution models[J]. Ecol Model, 2002, 148(1):1-13.

    [40]

    Hernandez PA, Graham CH, Master LL, Albert DL. The effect of sample size and species characteristics on performance of different species distribution modeling methods[J]. Ecography,2006, 29(5):773-785.

    [41]

    Graham CH, Elith J, Hijmans RJ, Guisan A, Peterson AT, Loiselle BA, Gro NPSW. The influence of spatial errors in species occurrence data used in distribution models[J]. J Appl Ecol, 2008, 45(1):239-247.

    [42]

    Pearson RG, Raxworthy CJ, Nakamura M, Peterson AT. Predicting species distributions from small numbers of occurrence records:a test case using cryptic geckos in Madagascar[J]. J Biogeogr, 2007, 34(1):102-117.

    [43] 中国科学院青藏高原综合科学考察队.西藏草原[M]. 北京:科学出版社, 1992. The Integrated Scientific Survey of Qianghai-Tibetan Plateau, Chinese Academy of Sciences. Grasslands in Xizang[M]. Beijing:Science Press, 1992.
    [44]

    Blach-Overgaard A, Svenning JC, Dransfield J, Greve M, Balslev H. Determinants of palm species distributions across Africa:the relative roles of climate, non-climatic environmental factors, and spatial constraints[J]. Ecography,2010, 33(2):380-391.

    [45]

    Pearson RG, Dawson TP. Predicting the impacts of climate change on the distribution of species:are bioclimate envelope models useful?[J].Globl Ecol Biogeogr, 2003, 12(5):361-371.

    [46] 何永涛, 石培礼, 张宪洲, 杜明远, 闫巍, 孙维. 当雄念青唐古拉山脉南坡不同海拔垫状点地梅分布特征[J]. 山地学报,2016, 31(6):641-646.

    He YT, Shi PL, Zhang XZ, Du MY, Yan W, Sun W. Elevational distribution of cushion plant Androsace tapete in the southern slope of Nyainqentanglha Mountains, Tibetan Plateau[J]. Journal of Mountain Science, 2013, 31(6):641-646.

    [47]

    Jiang Y, Wang T, de Bie CAJM, Skidmore AK, Liu X, Song S, Zhang L, Wang J, Shao X. Satellite-derived vegetation indices contribute significantly to the prediction of epiphyllous liverworts[J]. Ecol Indic, 2014, 38:72-80.

    [48]

    Xiao XM, Boles S, Liu JY, Zhuang DF, Liu ML. Characterization of forest types in Northeastern China, using multi-temporal SPOT-4 VEGETATION sensor data[J]. Remote Sens Environ, 2002, 82(2/3):335-348.

计量
  • 文章访问数:  1136
  • HTML全文浏览量:  1
  • PDF下载量:  1299
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-12
  • 修回日期:  2015-12-07
  • 网络出版日期:  2022-10-31
  • 发布日期:  2016-04-27

目录

    /

    返回文章
    返回