高级检索+

冬性植物红菜薹在不同温度处理下花青素积累的分子机制

魏国超, 程钧, 马百全, 王鲁, 谷超, 韩月澎

魏国超, 程钧, 马百全, 王鲁, 谷超, 韩月澎. 冬性植物红菜薹在不同温度处理下花青素积累的分子机制[J]. 植物科学学报, 2014, 32(4): 394-405. DOI: 10.3724/SP.J.1142.2014.40394
引用本文: 魏国超, 程钧, 马百全, 王鲁, 谷超, 韩月澎. 冬性植物红菜薹在不同温度处理下花青素积累的分子机制[J]. 植物科学学报, 2014, 32(4): 394-405. DOI: 10.3724/SP.J.1142.2014.40394
WEI Guo-Chao, CHENG Jun, MA Bai-Quan, WANG Lu, GU Chao, HAN Yue-Peng. Molecular Characterization of Anthocyanin Accumulation under Different Temperatures in Winter Plant Hongcaitai (Brassica rapa L.)[J]. Plant Science Journal, 2014, 32(4): 394-405. DOI: 10.3724/SP.J.1142.2014.40394
Citation: WEI Guo-Chao, CHENG Jun, MA Bai-Quan, WANG Lu, GU Chao, HAN Yue-Peng. Molecular Characterization of Anthocyanin Accumulation under Different Temperatures in Winter Plant Hongcaitai (Brassica rapa L.)[J]. Plant Science Journal, 2014, 32(4): 394-405. DOI: 10.3724/SP.J.1142.2014.40394
魏国超, 程钧, 马百全, 王鲁, 谷超, 韩月澎. 冬性植物红菜薹在不同温度处理下花青素积累的分子机制[J]. 植物科学学报, 2014, 32(4): 394-405. CSTR: 32231.14.SP.J.1142.2014.40394
引用本文: 魏国超, 程钧, 马百全, 王鲁, 谷超, 韩月澎. 冬性植物红菜薹在不同温度处理下花青素积累的分子机制[J]. 植物科学学报, 2014, 32(4): 394-405. CSTR: 32231.14.SP.J.1142.2014.40394
WEI Guo-Chao, CHENG Jun, MA Bai-Quan, WANG Lu, GU Chao, HAN Yue-Peng. Molecular Characterization of Anthocyanin Accumulation under Different Temperatures in Winter Plant Hongcaitai (Brassica rapa L.)[J]. Plant Science Journal, 2014, 32(4): 394-405. CSTR: 32231.14.SP.J.1142.2014.40394
Citation: WEI Guo-Chao, CHENG Jun, MA Bai-Quan, WANG Lu, GU Chao, HAN Yue-Peng. Molecular Characterization of Anthocyanin Accumulation under Different Temperatures in Winter Plant Hongcaitai (Brassica rapa L.)[J]. Plant Science Journal, 2014, 32(4): 394-405. CSTR: 32231.14.SP.J.1142.2014.40394

冬性植物红菜薹在不同温度处理下花青素积累的分子机制

基金项目: 

国家自然科学基金项目(National Natural Science Foundation of China,No. 31000139)。

详细信息
    作者简介:

    魏国超(1988-),男,硕士研究生,研究方向为园林与观赏植物遗传与育种(E-mail:weiguochaohn@126.com)。

    通讯作者:

    韩月澎,E-mail:yphan@wbgcas.cn

  • 中图分类号: Q945;S634.703

Molecular Characterization of Anthocyanin Accumulation under Different Temperatures in Winter Plant Hongcaitai (Brassica rapa L.)

  • 摘要: 芸薹属植物红菜薹(Brassica rapa)是一种常见的蔬菜,它的花茎和叶柄表皮中均积累有花青素。为了解红菜薹中花青素合成的分子机制,进行了花青素含量的测定和花青素合成相关基因的表达分析。研究结果表明,叶柄表皮中的花青素含量显著高于叶片(去主脉)的花青素含量。同时,叶柄表皮花青素合成相关基因的表达水平高于叶柄(去表皮)和叶片(去主脉)的表达水平,这表明红菜薹中花青素的合成调控发生在转录水平。BrMYBA1仅在叶柄表皮中表达,但BrbHLH1BrWD40在叶片和叶柄表皮中均能检测到表达。因此,BrMYBA1的转录激活可能与红菜薹的花青素合成相关。连续低温处理时,红菜薹叶柄表皮中的花青素含量逐渐增加,而该组织中花青素合成的结构基因表达水平逐渐降低。
    Abstract: Hongcaitai (Brassica rapa) is a vegetable that accumulates anthocyanins in both floral stems and leaf petioles. To understand the mechanism underlying the regulation of anthocyanin biosynthesis in B. rapa, anthocyanin accumulation and expression patterns of anthocyanin biosynthesis genes in seedlings of Hongcaitai were investigated. Anthocyanin content in epidermal tissues of petioles were significantly higher than those in leaves with excised mid-veins. Expression levels of all anthocyanin biosynthesis pathway genes were significantly higher in epidermal tissues of petioles than those detected in either endodermal tissues of petioles or in leaves, suggesting that anthocyanin biosynthesis was regulated at the transcriptional level. Transcripts of BrMYBA1 were exclusively expressed in the petiole epidermis; whereas, transcripts of BrbHLH1 and BrWD40 were detected in both leaves and petiole epidermal tissues. This suggests that activation of BrMYBA1 was likely responsible for anthocyanin pigmentation in Hongcaitai. Following cold treatment, seedlings demonstrated increased accumulation of anthocyanins in petiole epidermal tissues, while the transcription of anthocyanin pathway genes was reduced in petiole epidermal tissues.
  • [1]

    He J, Giusti MM. Anthocyanins: natural colorants with health-promoting properties[J]. Annu Rev Food Sci Technol, 2010(1): 163-187.

    [2]

    Grotewold E. The genetics and biochemistry of floral pigments[J]. Annu Rev Plant Biol, 2006(57): 761-780.

    [3]

    Allan AC, Hellens RP, Laing WA. MYB transcription factors that colour our fruit[J]. Trends Plant Sci, 2008, 13(3): 99-102.

    [4]

    Tanaka Y, Sasaki N, Ohmiya A. Biosynthesis of plant pigments: Anthocyanins, betalains and carotenoids[J]. Plant J, 2008, 54(4): 733-749.

    [5]

    Ohto M, Onai K, Furukawa Y, Aoki E, Araki T, Nakamura K. Effects of sugar on vegetative deve-lopment and floral transition in Arabidopsis[J]. Plant Physiol, 2001, 127(1): 252-261.

    [6]

    Steyn WJ, Wand SJE, Holcroft DM, Jacobs G. Anthocyanins in vegetative tissues: a proposed unified function in photoprotection[J]. New Phytol, 2002, 155(3): 349-361.

    [7]

    Lin-Wang K, Micheletti D, Palmer J, Volz R, Loza-no L, Espley R, Hellens RP, Chagnè D, Rowan DD, Troggio M, Iglesias I, Allan AC. High tempera-ture reduces apple fruit colour via modulation of the anthocyanin regulatory complex[J]. Plant Cell Environ, 2011, 34(7): 1176-1190.

    [8]

    Winkler AJ, Cook JA, Kliewer WM, Lider LA. Development and composition of grapes. General viticulture[M]. Berkeley, CA: University of California Press, 1962, 141-196.

    [9]

    Layne DR, Jiang Z, Rushing JW. The influence of reflective film and retain on red skin coloration and maturity of‘Gala’apples[J]. HortTechnology, 2002, 12(4): 640-645.

    [10]

    Dela G, Or E, Ovadia R, Nissim-Levi A, Weiss D, Oren-Shamir M. Changes in anthocyanin concentration and composition in‘Jaguar’rose flo-wers due to transient high temperature conditions[J]. Plant Sci, 2003, 164(3): 333-340.

    [11]

    Yamane T, Jeong ST, Goto-Yamamoto N, Koshita Y, Kobayashi S. Effects of temperature on anthocyanin biosynthesis in grape berry skins[J]. Am J Enol Vitic, 2006, 57(1): 54-59.

    [12]

    Mori K, Goto-Yamamoto N, Kitayama M, Hashizume K. Loss of anthocyanins in red-wine grape under high temperature[J]. J Exp Bot, 2007, 58(8): 1935-1945.

    [13]

    Christie PJ, Alfenito MR, Walbot V. Impact of low temperature stress on general phenylpropanoid and anthocyanin pathways: enhancement of transcript abundance and anthocyanin pigmentation in maize seedlings[J]. Planta, 1994, 194(4): 541-549.

    [14]

    Leyva A, Jarillo JA, Salinas J, Martinez-Zapater JM. Low temperature induces the accumulation of phenylalanine ammonialyase and chalcone synthase mRNAs of Arabidopsis thaliana in a light-dependent manner[J]. Plant Physiol, 1995, 108(1): 39-46.

    [15]

    Shvarts M, Borochov A, Weiss D. Low temperature enhances petunia flower pigmentation and induces chalcone synthase gene expression[J]. Physiol Plant, 1997, 99(1): 67-72.

    [16]

    Lo Piero AR, Puglisi I, Rapisarda P, Petrone G. Anthocyanins accumulation and related gene expression in red orange fruit induced by low temperature storage[J]. J Agric Food Chem, 2005, 53(23): 9083-9088.

    [17]

    Xie X, Li S, Zhang R, Zhao J, Chen Y, Zhao Q, Yao Y, You C, Zhang X, Hao Y. The bHLH transcription factor MdbHLH3 promotes anthocyanin accumulation and fruit colouration in response to low temperature in apples[J]. Plant Cell Environ, 2012, 35(11): 1884-1897.

    [18]

    Niu SS, Xu CJ, Zhang WS, Zhang B, Li X, Lin-Wang K, Ferguson IB, Allan AC, Chen KS. Coordinated regulation of anthocyanin biosynthesis in Chinese bayberry (Myrica rubra) fruit by a R2R3 MYB transcription factor[J]. Planta, 2010, 231(4): 887-899.

    [19]

    Romero I, Sanchez-Ballesta MT, Maldonado R, Escribano MI, Merodio C. Anthocyanin, antioxidant activity and stress-induced gene expression in high CO2-treated table grapes stored at low temperature[J]. Plant Physiol, 2008, 165(5): 522-530.

    [20]

    Wrolstad RE, Culbertson JD, Cornwell CJ, Mattick LR. Detection of adulteration in blackberry juice concentrates and wines[J]. J AOAC Int, 1982, 65(6): 1417-1423.

    [21]

    Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun J, et al. The genome of the mesopolyploid crop species Brassica rapa[J]. Nat Genet, 2011, (43): 1035-1039.

    [22]

    Chiu LW, Zhou X, Burke S, Wu X, Prior RL, Li L. The purple cauliflower arises from activation of a MYB transcription factor[J]. Plant Physiol, 2010, 154(3): 1470-1480.

    [23]

    Stracke R, Ishihara H, Huep G, Barsch A, Mehrtens F, Niehaus K, Weisshaar B. Differential re-gulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling[J]. Plant J, 2007, 50(4): 660-677.

    [24]

    Bogs J, Ebadi A, McDavid D, Robinson SP. Identification of the flavonoid hydroxylases from grapevine and their regulation during fruit development[J]. Plant Physiol, 2006, 140(1): 279-291.

    [25]

    Han Y, Vimolmangkang S, Soria-Guerra RE, Rosales-Mendoza S, Zheng D, Lygin AV, Korban SS. Ectopic expression of apple F 3'H genes contributes to anthocyanin accumulation in the Arabidopsis tt7 mutant grown under nitrogen stress[J]. Plant Physiol, 2010, 153(2): 806-820.

    [26]

    Wang J, Liao D. Survey and evaluation on pigment resources of plants[J]. News Report of Food Additives in China, 1993, (1): 40-47 (In Chinese).

    [27]

    Burdzinski C, Wendell DL. Mapping the anthocyaninless (anl) locus in rapid-cycling Brassica rapa (RBr) to linkage group R9[J]. BMC Genet, 2007, (8): 64.

    [28]

    Ozela EF, Stringheta PC, Chauca MC. Stability of anthocyanin in spinach vine (Basella rubra) fruits[J]. Cien Inv Agr, 2007, 34(2):115-120.

    [29]

    Gonzalez A, Zhao M, Leavitt JM, Lloyd AM. Re-gulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings[J]. Plant J, 2008, 53(5): 814-827.

计量
  • 文章访问数:  1209
  • HTML全文浏览量:  0
  • PDF下载量:  1942
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-16
  • 修回日期:  2014-03-26
  • 网络出版日期:  2022-11-01
  • 发布日期:  2014-08-29

目录

    /

    返回文章
    返回