Differences in leaf caloric values and construction costs between liana and tree species in Bauhinia
-
摘要: 以羊蹄甲属(Bauhinia)10种木质藤本和10种树木为研究对象,对其叶片的养分、灰分、热值与建成成本等9个指标进行测定,并分析了这些性状在两种生长型之间的差异以及性状之间的相互关系。结果显示,20种羊蹄甲属植物的干质量热值均值为18.64 kJ/g,去灰分热值均值为20.20 kJ/g。叶片热值和建成成本与碳含量显著正相关而与灰分含量显著负相关。羊蹄甲属木质藤本的叶片热值与建成成本极显著低于树木。主成分分析结果表明,木质藤本位于热值和构建成本低的一端,而树木则相反。研究结果说明,作为典型热带阳生植物,羊蹄甲属植物在存储和转化太阳能方面存在一定优势。羊蹄甲属木质藤本和树木可能采取不同的资源利用与分配策略,藤本羊蹄甲显著较低的叶片热值和建成成本,以及较低的比叶重反映其资源快速周转的策略;而树木羊蹄甲相比于藤本羊蹄甲则表现为较保守的资源利用策略。Abstract: To understand the leaf energy investment strategies of co-occurring lianas and trees, we investigated nine traits related to leaf nutrients, ash, caloric value, and leaf construction costs in 10 liana and 10 tree species of Bauhinia (Leguminosae). We also analyzed the differences in traits between two growth forms and the relationships among traits. Results showed that the means of the gross caloric value (GCV) and ash free caloric value (AFCV) of the 20 Bauhinia species were 18.64 kJ/g and 20.20 kJ/g, respectively. Both GCV and mass-based leaf construction cost were significantly and positively correlated with leaf carbon content, were significantly and negatively correlated with leaf ash content, and were significantly lower in lianas than in trees. Principal component analysis showed that lianas were negative loads of the first PCA axis with low leaf caloric values and mass-based construction costs, whereas trees showed the opposite pattern. These results indicated that, as typical tropical sun plants, Bauhinia species had some advantages in solar energy storage. Furthermore, liana and tree species in Bauhinia demonstrated different resource utilization and allocation strategies. The significantly lower caloric value, mass-based leaf construction cost, and leaf mass per area in lianas reflected a rapid resource turnover strategy, whereas trees exhibited a more conservative resource utilization strategy.
-
Keywords:
- Caloric value /
- Leaf construction cost /
- Liana /
- Bauhinia
-
-
[1] 杨福囤, 何海菊. 高寒草甸地区常见植物热值的初步研究[J]. 植物生态学与地植物学丛刊, 1983, 7(4):280-288. Yang FT, He HJ. A preliminary study on caloric values of common plants in alpine meadow[J]. Acta Phytoecologica Geobotanica Sinica, 1983, 7(4):280-288.
[2] Golley FB. Caloric value of wet tropical forest vegetation[J]. Ecology, 1969, 50(3):517-519.
[3] 杨春勐, 张树斌, 陈爱国, 杨大新. 干热河谷稀树灌丛优势植物叶片热值及养分特征[J]. 森林与环境学报, 2019, 39(1):54-60. Yang CM, Zhang SB, Chen AG, Yang DX. Caloric value and nutrients in the leaves of dominant savanna plant species in Yuanjiang dry-hot valley[J]. Journal of Forest and Environment, 2019, 39(1):54-60.
[4] Song GY, Hou J, Li Y, Zhang JH, He NP. Leaf caloric value from tropical to cold-temperate forests:latitudinal patterns and linkage to productivity[J]. PLoS One, 2016, 11(6):e0157935.
[5] 宋广艳, 何念鹏, 侯继华. 中国不同地带性森林乔木叶片热值特征及其影响因素[J]. 林业科学研究, 2016, 29(1):133-139. Song GY, He NP, Hou JH. Changes in leaf calorific value in main Chinese forests and its influencing factors[J]. Forest Research, 2016, 29(1):133-139.
[6] 朱美琴, 叶功富, 游水生, 陈增鸿, 白永会, 等. 东山岛海岸带季风常绿阔叶林各层次优势种的热值[J]. 福建农林大学学报(自然科学版), 2012, 41(3):248-252. Zhu MQ, Ye GF, You SS, Chen ZH, Bai YH, et al. Caloric values of the dominant species from different layers of monsoon evergreen broad-leaved forest at Dongshan Island[J]. Journal of Fujian Agriculture and Forestry University(Natural Science Edition), 2012, 41(3):248-252.
[7] 王云霖, 党永峰, 曾伟生. 东北落叶松不同器官的热值和灰分含量分析[J]. 林业资源管理, 2012, 3:100-106. Wang YL, Dang YF, Zheng WS. Calorific values and ash contents of different organs of larch in Northeastern China[J]. Forest Resources Management, 2012, 3:100-106.
[8] 谭忠奇, 林益明, 向平, 丁印龙, 彭在清. 5种榕属植物不同发育阶段叶片的热值与灰分含量动态[J]. 浙江林学院学报, 2003, 20(3):40-43. Tan ZQ, Lin YM, Xiang P, Ding YL, Peng ZQ. Caloric value and ash content in the leaves at the different deve-lopment stages of five Ficus species[J]. Journal of Zhejiang Forestry College, 2003, 20(3):264-267. [9] 周群英, 陈少雄, 韩斐扬. 华南十种桉树的热值与灰分含量比较[J]. 广西植物, 2016, 36(7):788-794. Zhou QY, Chen SX, Han FY. Comparison of calorific values and ash contents of ten Eucalyptus species in South China[J]. Guihaia, 2016, 36(7):788-794.
[10] Eamus D, Myers B, Duff G, Williams R. A cost-benefit analysis of leaves of eight Australian savanna tree species of differing leaf life-span[J]. Photosynthetica, 2000, 36(4):575-586.
[11] Penning De Vries FWT, Brunsting AHM, Van Laar HH. Products, requirements and efficiency of biosynthesis a quantitative approach[J]. J Theor Biol, 1974, 45(2):339-377.
[12] 宋莉英, 彭长连, 彭少麟. 华南地区3种入侵植物与本地植物叶片建成成本的比较[J]. 生物多样性, 2009, 17(4):378-384. Song LY, Peng CL, Peng SL. Comparison of leaf construction costs between three invasive species and three native species in South China[J]. Biodiversity Science, 2009, 17(4):378-384.
[13] 侯皓, 刘慧, 贺鹏程, 华雷, 许秋园, 叶清. 木兰科常绿与落叶物种叶片构建策略的差异[J]. 热带亚热带植物学报, 2019, 27(3):272-278. Hou H, Liu H, He PC, Hua L, Xu QY, Ye Q. Different leaf construction strategies in evergreen and deciduous species of Magnoliaceae[J]. Journal of Tropical and Subtro-pical Botany, 2019, 27(3):272-278.
[14] Funk JL, Vitousek PM. Resource-use efficiency and plant invasion in low-resource systems[J]. Nature, 2007, 446(7139):1079.
[15] 王睿芳, 冯玉龙. 叶物候、构建消耗和偿还时间对入侵植物碳积累的影响[J]. 生态学报, 2009, 29(5):2568-2577. Wang RF, Feng YL. The effects of leaf phenology, construction cost and payback time on carbon accumulation in invasive plants[J]. Acta Ecologica Sinica, 2009, 29(5):2568-2577.
[16] 屠臣阳, 皇甫超河, 姜娜, 高尚宾, 杨殿林. 入侵植物黄顶菊与5种共生植物叶片建成成本的比较[J]. 生态学杂志, 2013, 32(11):2985-2991. Tu CY, Huangfu CH, Jiang N, Gao SB, Yang DL. Comparison of leaf construction cost between invasive plant Flaveria bidentis and its five co-occuring plants[J]. Chinese Journal of Ecology, 2013, 32(11):2985-2991.
[17] 陈新微, 李慧燕, 刘红梅, 杨殿林, 皇甫超河. 入侵种银胶菊和三叶鬼针草与本地种气体交换特性的比较[J]. 生态学报, 2016, 36(18):5732-5740. Chen XW, Li HY, Liu HM, Yang DL, Huangfu CH. Comparison of gas exchange characteristics between invasive Parthenium hysterophorus and Bidens pilosa and co-occurring native Cirsium setosum (Asteraceae)[J]. Acta Ecologica Sinica, 2016, 36(18):5732-5740.
[18] Pyankov VI, Ivanov LA, Lambers H. Plant construction cost in the boreal species differing in their ecological stra-tegies[J]. Russ J Plant Physiol, 2001, 48(1):67-73.
[19] Williams K, Percival F, Merino J, Mooney HA. Estimation of tissue construction cost from heat of combustion and organic nitrogen content[J]. Plant Cell Environ, 1987, 10(9):725-734.
[20] 董周焱, 柏新富, 侯玉平, 卜庆梅. 胶东滨海8种树木叶片热值、建成成本及其适应能力[J]. 林业科学, 2015, 51(3):8-15. Dong ZY, Bai XF, Hou YP, Bu QM. Leaf calorific value of 8 tree species in the coastal areas of Jiaodong and cost of construction of leaf biomass and its adaptability[J]. Scientia Silvae Sinicae, 2015, 51(3):8-15.
[21] 刘艳莉, 陈鹏东, 侯玉平, 卜庆梅, 柏新富. 烟台沙质海岸前沿4种草本植物热值与建成成本分析[J]. 生态环境学报, 2018, 27(7):1211-1217. Liu YL, Chen PD, Hou YP, Bu QM, Bai XF. Calorific Value and Construction Cost of 4 Herbaceous Species in the Coastal Frontier of Yantai[J]. Ecology and Environmental Sciences, 2018, 27(7):1211-1217.
[22] Wu ZY, Peter HR, Hong DY et al. Floral of China[M]. Beijing:Science Press, 2013:6-21.
[23] Schnitzer SA, Bongers F. The ecology of lianas and their role in forests[J]. Trends Ecol Evol, 2002, 17(5):223-230.
[24] Schnitzer SA, Bongers F. Increasing liana abundance and biomass in tropical forests:emerging patterns and putative mechanisms[J]. Ecol Lett, 2011, 14(4):397-406.
[25] Schnitzer SA, van der Heijden GMF. Lianas have a seasonal growth advantage over co-occurring trees[J]. Ecology, 2019, 100(5):e02655.
[26] Zhu SD, Cao KF. Contrasting cost-benefit strategy between lianas and trees in a tropical seasonal rain forest in southwestern China[J]. Oecologia, 2010, 163(3):591-599.
[27] Poorter H, Pepin S, Rijkers T, et al. Construction costs, chemical composition and payback time of high-and low-irradiance leaves[J]. J Exp Bot, 2005, 57(2):355-371.
[28] 沙丽清, 孟盈, 冯志立, 郑征, 曹敏, 刘宏茂. 西双版纳不同热带森林土壤氮矿化和硝化作用研究[J]. 植物生态学报, 2000,24(2):152-156. Sha LQ, Meng Y, Feng ZL, Zheng Z, Cao M, Liu HM. Nitrification and net N mineralization rate of soil under different tropical forests in Xishuangbanna, Southwest China[J]. Aca Phytoecologica Sinica, 2000,24(2):152-156.
[29] Warton DI, Wright IJ, Falster DS, Westoby M. Bivariate line-fitting methods for allometry[J]. Biol Rev, 2006, 81(2):259-291.
[30] 官丽莉, 周小勇, 罗艳. 我国植物热值研究综述[J]. 生态学杂志, 2005,24(4):452-457. Guan LL, Zhou XY, Luo Y. A review on the study of plant caloric value in China[J]. Chinese Journal of Ecology, 2005,24(4):452-457.
[31] 鲍雅静, 李政海, 韩兴国, 宋国宝, 杨晓慧, 吕海燕. 植物热值及其生物生态学属性[J]. 生态学杂志, 2006,25(9):1095-1103. Bao YJ, Li ZH, Han XG, Song GB, Yang XH, Lu HY. Plant caloric value and its bio-ecological attributes[J]. Plant Sciences, 2006,25(9):1095-1103.
[32] 郝朝运, 刘鹏. 浙江北山七子花群落主要植物叶热值[J]. 生态学报, 2006,26(6):1709-1717. Hao CY, Liu P. The caloric value of the dominant plant species of a Heptacodiu miconioides forest at Bei Mountain, Zhejiang province, China[J]. Acta Ecologica Sinica, 2006,26(6):1709-1717.
[33] 谭嫣辞, 鲍雅静, 李政海, 张靖, 梁杰, 等. 蒙辽农牧交错区草地植物种群和功能群热值研究[J]. 草地学报, 2019, 27(1):15-21. Tan YC, Bao YJ, Li ZG, Zhang J, Liang J, et al. Calorific values of grassland plant population and functional groups in the agro-pastoral ecotone of Inner Mongolia and Liaoning province border[J]. Acta Agrestia Sinica, 2019, 27(1):15-21.
[34] Larcher W. Physiological plant ecology:ecophysiology and stress physiology of functional groups:Vol. 4[M]. New York:Springer-Verlag, 2003.
[35] Santiago LS, Wright SJ. Leaf functional traits of tropical forest plants in relation to growth form[J]. Funct Ecol, 2007, 21(1):19-27.
[36] Funk JL. Differences in plasticity between invasive and native plants from a low resource environment[J]. J Ecol, 2008, 96(6):1162-1173.
[37] Osunkoya OO, Bayliss D, Panetta FD, Vivian-Smith G. Leaf trait co-ordination in relation to construction cost, carbon gain and resource-use efficiency in exotic invasive and native woody vine species[J]. J Ecol, 2010, 106(2):371-380.
[38] Vivek P, Parthasarathy Narayanaswamy. Contrasting leaf-trait strategies in dominant liana and tree species of Indian tropical dry evergreen forest[J]. Flora, 2018, 249:143-149.
[39] De Vries FWTP, Brunsting AHM, Van Laar HH. Products, requirements and efficiency of biosynthesis a quantitative approach[J]. J Theor Biol, 1974, 45(2):339-377.
[40] Evans JR, Poorter H. Photosynthetic acclimation of plants to growth irradiance:the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain[J]. Plant Cell Environ, 2001, 24(8):755-767.
[41] Cunningham SA, Summerhayes B, Westoby M. Evolutio-nary divergences in leaf structure and chemistry, comparing rainfall and soil nutrient gradients[J]. Ecol Monogr, 1999, 69(4):569-588.
[42] 周群英, 陈少雄, 吴志华, 韩斐扬, 陈宏, 林良柱. 巨桉等5种桉树的热值和灰分含量研究[J]. 热带作物学报, 2009, 30(2):161-166. Zhou QY, Chen SX, Wu ZH, Han FY, Chen H, Lin LZ. Ash Contents and Caloric Values of Five Eucalypt Species[J]. Chinese Journal of Tropical Crops, 2009, 30(2):161-166.
[43] Wright IJ, Reich PB, Westoby M, David DA, Zdravko B, et al. The worldwide leaf economics spectrum[J]. Nature, 2004, 428(6985):821.
-
期刊类型引用(5)
1. 唐庆,李冰,唐忠国,李进华,邹一强,陈弘曦,林茂. 不同处理方式对囊托羊蹄甲扦插繁殖的影响. 福建林业科技. 2024(01): 120-124 . 百度学术
2. 贾贤德,吕海英,巫利梅,杨伊楠,黄仁豪,王昊,牛鑫. 天山野果林准噶尔山楂叶片功能性状及解剖结构对海拔的响应. 植物科学学报. 2024(02): 150-159 . 本站查看
3. 李雪楠,李振学,李发文,温韩东,张树斌. 干热河谷稀树灌丛藤本植物叶片养分重吸收特性. 森林与环境学报. 2024(03): 260-266 . 百度学术
4. 吴君,何天友,陈凌艳,江登辉,施成坤,荣俊冬,郑郁善,陈礼光. 施肥对沿海沙地鼓节竹叶片建成成本及适应性的影响. 福建农业学报. 2023(01): 90-98 . 百度学术
5. 赵镇贤,陈银萍,王立龙,王彤彤,李玉强. 河西走廊荒漠区不同功能类群植物叶片建成成本的比较. 植物生态学报. 2023(11): 1551-1560 . 百度学术
其他类型引用(2)
计量
- 文章访问数: 539
- HTML全文浏览量: 5
- PDF下载量: 674
- 被引次数: 7