高级检索+

一株富含碳水化合物微藻的筛选和分子鉴定

张虎, 温小斌, 王中杰, 李夜光, 耿亚洪

张虎, 温小斌, 王中杰, 李夜光, 耿亚洪. 一株富含碳水化合物微藻的筛选和分子鉴定[J]. 植物科学学报, 2014, 32(6): 645-654. DOI: 10.11913/PSJ.2095-0837.2014.60645
引用本文: 张虎, 温小斌, 王中杰, 李夜光, 耿亚洪. 一株富含碳水化合物微藻的筛选和分子鉴定[J]. 植物科学学报, 2014, 32(6): 645-654. DOI: 10.11913/PSJ.2095-0837.2014.60645
ZHANG Hu, WEN Xiao-Bin, WANG Zhong-Jie, LI Ye-Guang, GENG Ya-Hong. Selection of a Carbohydrate-rich Microalgae and Its Molecular Identification[J]. Plant Science Journal, 2014, 32(6): 645-654. DOI: 10.11913/PSJ.2095-0837.2014.60645
Citation: ZHANG Hu, WEN Xiao-Bin, WANG Zhong-Jie, LI Ye-Guang, GENG Ya-Hong. Selection of a Carbohydrate-rich Microalgae and Its Molecular Identification[J]. Plant Science Journal, 2014, 32(6): 645-654. DOI: 10.11913/PSJ.2095-0837.2014.60645
张虎, 温小斌, 王中杰, 李夜光, 耿亚洪. 一株富含碳水化合物微藻的筛选和分子鉴定[J]. 植物科学学报, 2014, 32(6): 645-654. CSTR: 32231.14.PSJ.2095-0837.2014.60645
引用本文: 张虎, 温小斌, 王中杰, 李夜光, 耿亚洪. 一株富含碳水化合物微藻的筛选和分子鉴定[J]. 植物科学学报, 2014, 32(6): 645-654. CSTR: 32231.14.PSJ.2095-0837.2014.60645
ZHANG Hu, WEN Xiao-Bin, WANG Zhong-Jie, LI Ye-Guang, GENG Ya-Hong. Selection of a Carbohydrate-rich Microalgae and Its Molecular Identification[J]. Plant Science Journal, 2014, 32(6): 645-654. CSTR: 32231.14.PSJ.2095-0837.2014.60645
Citation: ZHANG Hu, WEN Xiao-Bin, WANG Zhong-Jie, LI Ye-Guang, GENG Ya-Hong. Selection of a Carbohydrate-rich Microalgae and Its Molecular Identification[J]. Plant Science Journal, 2014, 32(6): 645-654. CSTR: 32231.14.PSJ.2095-0837.2014.60645

一株富含碳水化合物微藻的筛选和分子鉴定

基金项目: 

国家高技术研究发展计划(863计划)(2013AA065803)

国家自然科学基金资助项目(CNSF31272680)。

详细信息
    作者简介:

    张虎(1988-), 男, 硕士研究生, 主要从事微藻生物技术研究(E-mail:zhanghu1900@sina.com)。

    通讯作者:

    耿亚洪,E-mail:yahong@wbgcas.cn

  • 中图分类号: Q949.2

Selection of a Carbohydrate-rich Microalgae and Its Molecular Identification

  • 摘要: 微藻生长快, 单位体积碳水化合物产率高, 是发酵生产生物乙醇的理想原料。本研究采用通气培养系统, 对初筛得到的10株微藻进行分批培养, 以单位体积碳水化合物产率为主要指标, 筛选富含碳水化合物的优良藻种。研究结果显示:10株微藻的生物质干重、可溶性糖含量、碳水化合物含量和碳水化合物产率变化范围分别在0.922 ~ 1.965 g/L、4.42% ~ 19.23%、26.8% ~ 60.9% 和36.17 ~ 149.67 mg·L-1·d-1之间, 其中藻株GZ-57的碳水化合物产率和可溶糖含量最高, 分别为149.67 mg·L-1·d-1 和19.23%, 表明藻株GZ-57是一株具有培养潜力的高产碳水化合物微藻。进一步对其进行形态特征及基于18S rDNA、ITS序列的分子系统学分析, 发现藻株GZ-57与栅藻科(Scenedesmaceae)链带藻属(Desmodesmus)的极大链带藻(Desmodesmus maximus)亲缘关系较近, 因此将其鉴定为极大链带藻(Desmodesmus maximus)。
    Abstract: Microalgae are an ideal raw material for bioethanol production because of fast growth and high carbohydrate productivity. Ten pre-selected microalgae strains were cultivated in an air-bubble column photobioreactor to test the characteristics of carbohydrate production, and carbohydrate productivity was used as the key parameter to select the strains suitable for carbohydrate production. Results showed that biomass, soluble sugar content, total carbohydrate content and carbohydrate productivity of the tested strains were in the range of 0.922 - 1.965 g/L, 4.42% - 19.23%, 26.8% - 60.9% and 36.17 - 149.67 mg·L-1·d-1, respectively. Both carbohydrate productivity (149.67 mg·L-1·d-1) and soluble sugar content (19.23%) of GZ-57 were the highest among the investigated strains, and GZ-57 was selected as the candidate strain with greatest potential in bioethanol production. Morphological observation and molecular phylogenetic analyses of 18S rDNA gene sequences and internal transcribed sequences (ITS) indicated that GZ-57 belonged to the Desmodesmus genus, and was identified as Desmodesmus maximus.
  • [1]

    Avinash KA. Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines[J]. Prog Energ Combust, 2007, 33(3):233-271.

    [2]

    Ayhan D. Social, economic, environmental and policy aspects of biofuels[J]. Energy Educ Sci Tech Part B, 2010, 2:75-109.

    [3]

    Chisti Y. Biodiesel from microalgae[J]. Biotechnol Adv, 2007, 25(3): 294-306.

    [4] 梅洪, 张成武, 殷大聪, 耿亚红, 欧阳峥嵘, 李夜光. 利用微藻生产可再生能源概况[J]. 武汉植物学研究, 2008, 26(6): 651-661.
    [5] 庞通, 刘建国, 林伟, 刘倩. 藻类生物燃料乙醇制备的研究进展[J]. 渔业现代化, 2012, 39(5): 63-71.
    [6]

    Ayhan D. Political, economic and environmental impacts of biofuels: A review[J]. Appl Energ, 2009, 86: S108-S117.

    [7]

    Razif H, Michael KD, Gareth MF. Microalgal biomass as a fermentation feedstock for bioethanol production[J]. J Chem Technol Biot, 2010, 85(2):199-203.

    [8]

    Bobban S, Mark E. An integrated renewable energy park approach for algal biofuel production in United States[J]. Energy Policy, 2010, 38: 4897-4902.

    [9]

    Mike P. Algal capture of carbon dioxide; biomass generation as a tool for greenhouse gas mitigation with reference to New Zealand energy strategy and policy[J]. Energy Policy, 2009, 37: 3428-3437.

    [10]

    Paul C, Min M, Yi FC, Liang W, Ye CL, Qin C, Chen GW, et al. Review of the biological and engineering aspects of algae to fuels approach[J]. Int J Agri Biol Eng, 2009, 2(4):1-30.

    [11] 胡鸿钧, 魏印心. 中国淡水藻类[M]. 北京: 科学出版社, 2006: 318-324.
    [12]

    Ho SH, Huang SW, Chen CY, Hasunuma T, Kondo A, Chang JS. Bioethanol production using carbohydrate-rich microalgae biomass as feedstock[J]. Bioresource Technol, 2013, 135: 191-198.

    [13]

    Ho SH, Chen CY, Chang JS. Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N[J]. Bio-resource Technol, 2012, 113: 244-252.

    [14]

    John RP, Anisha GS, Nampoothiri KM, Pandey A. Micro and macroalgal biomass: a renewable source for bioethanol[J]. Bioresource Technol, 2011, 102 (1): 186-193.

    [15]

    Allen MM, Stanier R. Growth and division of some unicellular blue-green algae[J]. J Gen Microbiol, 1968,51(2): 199-202.

    [16] 张桂艳, 温小斌, 梁芳, 梅洪, 耿亚红, 李夜光. 重要理化因子对小球藻生长和油脂产量的影响[J]. 生态学报, 2011,31(8): 2076-2085.
    [17] 江丽丽, 温小斌, 耿亚洪, 梅洪, 李夜光. 一株产油微藻的筛选及分子鉴定[J]. 水生生物学报, 2013, 37(4): 606-612.
    [18] 李涛, 李爱芬, 桑敏, 吴洪, 尹顺吉, 张成武. 富油能源微藻的筛选及产油性能评价[J]. 中国生物工程杂志, 2011, 31( 4): 98-105.
    [19]

    Mercz TI. A study of high lipid yielding microalgae with potential for large-scale production of lipids and polyunsaturated fatty acids[D]. Perth, Australia: Murdoch University, 1994.

    [20]

    Griffiths MJ, Harrison STL. Lipid productivity as a key characteristic for choosing algal species for biodiesel production[J]. J Appl Phycol, 2009, 21(5):493-507.

    [21]

    Scott O, Bendich A. Extraction of DNA from plant tissue[J]. Plant Mol Biol Manual, 1988, 6: 1-10.

    [22]

    Medlin L, Elwood HJ, Stickel S, Sogin ML. The characterization of enzymatically amplified eukar-yotic 16S-like rRNA-coding regions[J]. Gene, 1988,71(2): 491-499.

    [23]

    White TJ, Bruns T, Lee S, Taylor JW. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics[C]//Innis MA, Gelfand DH, Sninsky JJ, White TJ, eds. PCR Protocols: A guide to methods and applications. Amsterdam: Academic Press, 1990: 315-322.

    [24]

    Jeon SL, Hegewald E. A revision of the species Desmodesmus perforatus and D. tropicus (Scene-desmaceae, Chlorophyceae, Chlorophyta)[J]. Phycologia, 2006, 45(5): 567-584.

    [25]

    Johnson JL, Fawley MW, Fawley KP. The diversity of Scenedesmus and Desmodesmus (Chlorophy-ceae) in Itasca State Park, Minnesota, USA[J]. Phycologia, 2007, 46(2): 214-229.

    [26] 贺国强, 邓志平, 陶丽, 陶三凤. 高油脂产率微藻的筛选及发酵条件的优化[J]. 农业生物技术学报, 2010, 18(6): 1046-1053.
    [27] 郝宗娣, 刘平怀, 杨勋, 张森. 热带淡水产油微藻的分离筛选与鉴定[J]. 水生生物学报, 2013, 37(3): 547-552.
    [28]

    Borowitzka MA. Marine and halophilic algae for the production of biofuels[J]. J Biotechnol, 2008, 136: S7.

    [29] 徐惠风, 金研铭, 张春祥, 徐克章. 向日葵叶片可溶性糖含量的研究[J]. 吉林农业大学学报, 2000, 22(1): 23-25.
    [30] 倪郁, 郭彦军, 吕俊, 张家骅. 水分胁迫下豆科牧草的生理生化变化[J]. 土壤通报, 2004, 25(3): 275-278.
    [31] 陈青. 几种生化物质与辣椒抗蚜性的相关性[J]. 园艺学报, 2002, 29(6): 533-536.
    [32] 赵江涛, 李晓峰, 李航, 徐睿忞. 可溶性糖在高等植物代谢调节中的生理作用[J].安徽农业科学, 2006,34(24): 6423-6425.
    [33] 武维华. 植物生理学[M]. 第2版. 北京: 科学出版社, 2008: 446, 453, 467.
    [34]

    Lewis LA. Diversity and phylogenetic placement of Bracteacoccus Tereg (Chlorophyceae, Chiorophyta) based on 18S ribosomal RNA gene sequence data[J]. J Phycol, 1997, 33(2): 279-285.

    [35]

    Fawley M, Fawley K, Buchheim M. Molecular diversity among communities of freshwater microchlorophytes[J]. Microb Ecol, 2004, 48(4): 489-499.

    [36]

    Lu D, Goebel J, Qi Y, Zou J, Han X, Gao Y, Li Y. Morphological and genetic study of Prorocentrum donghaiense Lu from the East China Sea, and comparison with some related Prorocentrum species[J]. Harmful Algae, 2005, 4(3): 493-505.

    [37]

    Hegewald E. Taxonomy and phylogeny of Scenede-smus[J]. Algae, 1997, 12(4): 235-246.

    [38]

    An SS, Friedl T, Hegewald E. Phylogenetic relationships of Scenedesmus and Scenedesmus-like coccoid green algae as inferred from ITS-2 rDNA sequence comparisons[J]. Plant Biol, 2008, 1(4): 418-428.

    [39] 屈良鹄, 陈月琴. 生物分子分类检索表——原理与方法[J]. 中山大学学报: 自然科学版, 1999,38(1): 1-6.
    [40]

    Lewis LA, Flechtner VR. Cryptic species of Scenedesmus (Chlorophyta) from desert soil communities of western north America[J]. J Phycol, 2004, 40(6): 1127-1137.

    [41]

    Hegewald E, Wolf M, Keller A, Frienl T, Krienitz L. ITS2 sequence-structure phylogeny in the Scene-desmaceae with special reference to Coelastru (Chlorophyta, Chlorophyceae), including the new genera Comasiella and Pectinodesmus[J]. Phycologia, 2010, 49(4): 325-335.

计量
  • 文章访问数:  1402
  • HTML全文浏览量:  4
  • PDF下载量:  1848
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-02-18
  • 网络出版日期:  2022-10-31
  • 发布日期:  2014-12-29

目录

    /

    返回文章
    返回