Identification and expression analysis of the AcSWEET gene family in Actinidia chinensis Planch.
-
摘要:
SWEET(Sugars will eventually be exported transporters)是近年来在植物中发现的一组糖转运蛋白,在植物生长、发育和非生物及生物胁迫响应等多种生理过程中发挥着重要作用。本研究利用生物信息学方法对猕猴桃(Actinidia chinensis Planch.)AcSWEET基因家族进行了鉴定,共获得29个AcSWEET基因,并对其氨基酸数量、相对分子量、等电点、不稳定系数、亚细胞定位、亲水指数进行了分析。结果显示:29个基因编码的氨基酸数目为680~906个;分子量范围为7.531~101.266 kDa,等电点在6.95~9.90,多数蛋白为定位于细胞膜的疏水性蛋白,具有1~2个MtN3结构域或PQ-loop结构域。此外,AcSWEET基因的外显子数量在4~6个,系统进化分析结果表明猕猴桃AcSWEET基因家族被分为4个亚族,同一亚族基因具有相似的内含子、外显子以及保守基序。表达模式分析结果表明,这些基因在果实不同发育时期具有表达特异性。推测AcSWEET26、AcSWEET7、AcSWEET15和AcSWEET13可能参与猕猴桃的蔗糖转运和积累。
Abstract:The sugar will eventually be exported transporters (SWEET) are a recently discovered group of sugar transporters in plants, which play important roles in various physiological processes, such as plant growth, development, and abiotic and biotic stress. This study aimed to characterize the Actinidia chinensis Planch. SWEET gene family and analyze its expression during fruit development using bioinformatics methods. A total of 29 AcSWEET genes were identified, and their amino acid quantity, relative molecular weights, isoelectric points, instability coefficients, subcellular localizations, and hydrophilicity indices were analyzed. Results showed that the 29 AcSWEET genes encoded proteins with amino acid lengths ranging from 680 to 906 residues, molecular weights between 7.531 kDa and 101.266 kDa, and isoelectric points between 6.95 and 9.9. Most proteins were relatively stable hydrophobic, and localized on the cell membrane, containing 1–2 MtN3 domains. Additionally, gene structure, conserved motifs, evolutionary relationships, cis-regulatory elements, and expression patterns at different developmental stages of fruit development were systematically analyzed. Results indicated that the AcSWEET genes had 4–6 exons. Phylogenetic analysis revealed that the kiwifruit SWEET gene family was divided into four subgroups, responsible for transporting glucose, fructose, and sucrose. Genes within the same subgroup shared similar intron-exon structures and conserved motifs. Expression pattern analysis during kiwifruit development indicated that the AcSWEET genes exhibited stage-specific expression. We speculated that AcSWEET26, AcSWEET7, AcSWEET15, and AcSWEET13 may be involved in sucrose transport and accumulation in kiwifruit.
-
Keywords:
- Actinidia chinensis /
- SWEET gene /
- Gene family /
- Gene expression analysis
-
2 1~2)如需查阅附图内容请登录《植物科学学报》网站(http://www.plantscience.cn)查看本期文章。3 如需查阅附图内容请登录《植物科学学报》网站(http://www.plantscience.cn)查看本期文章。1 如需查阅附图内容请登录《植物科学学报》网站(http://www.plantscience.cn)查看本期文章。4 如需查阅附图内容请登录《植物科学学报》网站(http://www.plantscience.cn)查看本期文章。5 如需查阅附图内容请登录《植物科学学报》网站(http://www.plantscience.cn)查看本期文章。 -
表 1 实时荧光定量PCR引物
Table 1 Quantitative real-time polymerase chain reaction primers
基因名称
Gene name正向引物 (5′–3′)
Forward primer反向引物(5′–3′)
Reverse primerAcSWEET7 TAGTCGTTGGATGGGTTTGC TGCGGTCATTGTAAGGAAAA AcSWEET13 ATAAGAAGAAATCAACCGAAGG GCAGCAAATACGCTCACAGA AcSWEET15 GAGTCACGATTGTCGGATGG TTGGAGCTTCACTTCTGGTAGA AcSWEET26 CACCCTTCTCATCACCATCA TAGGCAAATCCAACCAACAA AcSWEET29 CACATCCCTATTATCAAACG AAATTCTGGTAGAACCTGCT Actin GTGCTCAGTGGTGGTTCAA GACGCTGTATTTCCTCTCAG 表 2 AcSWEET基因家族成员信息
Table 2 Information on AcSWEET gene family members
基因
Gene序列ID
Sequence ID蛋白质长度
Number of amino acids分子量
MW / Da等电点
Theoretical pI不稳定系数
Instability index脂溶指数
Aliphatic index亲水指数
Hydrophobicity scales亚细胞定位
Subcellular localization染色体位置
Chromosome locationAcSWEET1 Ach05g06950DH 68 7 531.83 8.03 29.09 117.65 0.469 叶绿体 5 AcSWEET2 Ach06g07770DH 245 2 7196.90 6.95 47.57 103.39 0.568 质膜 6 AcSWEET3 Ach06g08520DH 236 26 023.09 9.36 35.65 119.36 0.876 液泡膜 6 AcSWEET4 Ach10g04100DH 253 27 658.05 9.57 29.51 114.82 0.590 质膜 10 AcSWEET5 Ach10g10290DH 236 26 340.97 9.31 35.04 95.42 0.163 细胞核 10 AcSWEET6 Ach11g04370DH 252 27 746.95 9.37 34.26 109.44 0.512 质膜 11 AcSWEET7 Ach13g04100DH 288 32 042.07 6.99 36.66 120.14 0.694 质膜 13 AcSWEET8 Ach13g17010DH 234 25 814.53 8.80 36.02 111.58 0.684 质膜 13 AcSWEET9 Ach14g03170DH 198 21 765.16 9.71 29.99 120.51 0.703 质膜 14 AcSWEET10 Ach14g03210DH 186 20 525.26 9.91 31.15 117.96 0.334 质膜 14 AcSWEET11 Ach16g04520DH 103 11 850.58 4.93 40.50 73.79 −0.449 细胞质 16 AcSWEET12 Ach16g04530DH 136 15 558.83 9.44 31.10 129.78 0.856 质膜 16 AcSWEET13 Ach16g04540DH 287 32 139.66 9.39 38.65 117.46 0.778 质膜 16 AcSWEET14 Ach16g06160DH 238 26 764.96 9.10 37.01 115.46 0.671 质膜 16 AcSWEET15 Ach17g10410DH 275 30 968.82 7.61 35.74 111.35 0.656 质膜 17 AcSWEET16 Ach17g10420DH 132 14 617.52 9.08 49.24 108.71 0.679 叶绿体 17 AcSWEET17 Ach18g07250DH 250 28 204.71 9.37 44.39 115.76 0.554 质膜 18 AcSWEET18 Ach19g02550DH 296 33 224.04 8.46 35.78 130.57 0.841 质膜 19 AcSWEET19 Ach19g10330DH 304 33 198.18 9.49 29.29 111.48 0.346 质膜 19 AcSWEET20 Ach19g11300DH 906 101 266.08 9.61 46.80 86.35 −0.272 质膜 19 AcSWEET21 Ach21g07220DH 252 27 533.77 9.59 28.91 114.17 0.663 质膜 21 AcSWEET22 Ach23g12130DH 235 26 009.82 9.30 45.47 118.64 0.802 液泡膜 23 AcSWEET23 Ach24g12310DH 244 27 010.81 8.48 35.30 116.23 0.618 质膜 24 AcSWEET24 Ach25g05410DH 259 28 487.96 9.63 43.00 115.52 0.558 液泡膜 25 AcSWEET25 Ach26g07610DH 183 20 725.66 8.49 41.84 114.48 0.680 液泡膜 26 AcSWEET26 Ach26g09140DH 290 32 463.83 8.77 38.39 114.93 0.722 质膜 26 AcSWEET27 Ach26g09150DH 340 38 910.41 9.24 48.76 88.85 0.107 质膜 26 AcSWEET28 Ach27g01830DH 81 9 064.60 9.30 39.94 101.11 0.251 叶绿体 27 AcSWEET29 Ach28g11120DH 261 29 612.67 8.97 37.55 117.36 0.777 质膜 28 注:亲水指数为负值表示亲水性,正值表示疏水性;不稳定指数大于 40 为不稳定蛋白;脂溶指数小于 100 为脂溶蛋白。 Notes: For total average hydrophilicity, a negative value indicates hydrophilicity, while a positive value indicates hydrophobicity; Instability index greater than 40 indicates an unstable protein; Lipid solubility index less than 100 indicates lipid soluble protein. 表 3 猕猴桃果实发育过程中糖含量及候选基因的相关性
Table 3 Correlation of sugar content and candidate genes at different developmental stages
指标
Item蔗糖
Sucrose葡萄糖
Glucose果糖
FructoseAcSWEET7 AcSWEET13 AcSWEET15 AcSWEET26 AcSWEET29 蔗糖 1 葡萄糖 0.960** 1 果糖 0.977** 0.975** 1 AcSWEET7 0.754** 0.664* 0.751** 1 AcSWEET13 0.677* 0.698* 0.694* 0.466 1 AcSWEET15 0.773** 0.686* 0.776** 0.972** 0.411 1 AcSWEET26 0.541 0.467 0.549 0.542 0.397 0.693* 1 AcSWEET29 0.904** 0.836** 0.915** 0.910** 0.566 0.934** 0.647* 1 Notes: *: P<0.05; **: P<0.01. -
[1] 黄宏文. 中国猕猴桃种质资源[M]. 北京:中国林业出版社,2013:10−27. [2] Zhang L,Tang ZM,Zheng H,Zhong CH,Zhang Q. Comprehensive analysis of metabolome and transcriptome in fruits and roots of kiwifruit[J]. Int J Mol Sci,2023,24(2):1299. doi: 10.3390/ijms24021299
[3] Ruan YL. Sucrose metabolism:gateway to diverse carbon use and sugar signaling[J]. Annu Rev Plant Biol,2014,65:33−67. doi: 10.1146/annurev-arplant-050213-040251
[4] Schulz A,Beyhl D,Marten I,Wormit A,Neuhaus E,et al. Proton-driven sucrose symport and antiport are provided by the vacuolar transporters SUC4 and TMT1/2[J]. Plant J,2011,68(1):129−136. doi: 10.1111/j.1365-313X.2011.04672.x
[5] Kühn C,Grof CPL. Sucrose transporters of higher plants[J]. Curr Opin Plant Biol,2010,13(3):287−297. doi: 10.1016/j.pbi.2010.02.001
[6] Ayre BG. Membrane-transport systems for sucrose in relation to whole-plant carbon partitioning[J]. Mol Plant,2011,4(3):377−394. doi: 10.1093/mp/ssr014
[7] Chen LQ,Hou BH,Lalonde S,Takanaga H,Hartung ML,et al. Sugar transporters for intercellular exchange and nutrition of pathogens[J]. Nature,2010,468(7323):527−532. doi: 10.1038/nature09606
[8] Doidy J,Grace E,Kühn C,Simon-Plas F,Casieri L,Wipf D. Sugar transporters in plants and in their interactions with fungi[J]. Trends Plant Sci,2012,17(7):413−422. doi: 10.1016/j.tplants.2012.03.009
[9] Chen LQ. SWEET sugar transporters for phloem transport and pathogen nutrition[J]. New Phytol,2014,201(4):1150−1155. doi: 10.1111/nph.12445
[10] Eom JS,Chen LQ,Sosso D,Julius BT,Lin IW,et al. SWEETs,transporters for intracellular and intercellular sugar translocation[J]. Curr Opin Plant Biol,2015,25:53−62. doi: 10.1016/j.pbi.2015.04.005
[11] Hamada M,Wada S,Kobayashi K,Satoh N. Ci-Rga,a gene encoding an MtN3/saliva family transmembrane protein,is essential for tissue differentiation during embryogenesis of the ascidian Ciona intestinalis[J]. Differentiation,2005,73(7):364−376. doi: 10.1111/j.1432-0436.2005.00037.x
[12] Xuan YH,Hu YB,Chen LQ,Sosso D,Ducat DC,et al. Functional role of oligomerization for bacterial and plant SWEET sugar transporter family[J]. Proc Natl Acad Sci USA,2013,110(39):E3685−E3694.
[13] Liu HT,Lyu WY,Tian SH,Zou XH,Zhang LQ,et al. The SWEET family genes in strawberry:identification and expression profiling during fruit development[J]. South Afr J Bot,2019,125:176−187. doi: 10.1016/j.sajb.2019.07.002
[14] Chen LQ,Qu XQ,Hou BH,Sosso D,Osorio S,et al. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport[J]. Science,2012,335(6065):207−211. doi: 10.1126/science.1213351
[15] Chardon F,Bedu M,Calenge F,Klemens PAW,Spinner L,et al. Leaf fructose content is controlled by the vacuolar transporter SWEET17 in Arabidopsis[J]. Curr Biol,2013,23(8):697−702. doi: 10.1016/j.cub.2013.03.021
[16] Gao Y,Wang ZY,Kumar V,Xu XF,Yuan DP,et al. Genome-wide identification of the SWEET gene family in wheat[J]. Gene,2018,642:284−292. doi: 10.1016/j.gene.2017.11.044
[17] Feng CY,Han JX,Han XX,Jiang J. Genome-wide identification,phylogeny,and expression analysis of the SWEET gene family in tomato[J]. Gene,2015,573(2):261−272. doi: 10.1016/j.gene.2015.07.055
[18] Li W,Ren ZY,Wang ZY,Sun K,Pei XY,et al. Evolution and stress responses of Gossypium hirsutum SWEET genes[J]. Int J Mol Sci,2018,19(3):769. doi: 10.3390/ijms19030769
[19] Guo CY,Li HY,Xia XY,Liu XY,Yang L. Functional and evolution characterization of SWEET sugar transporters in Ananas comosus[J]. Biochem Biophys Res Commun,2018,496(2):407−414. doi: 10.1016/j.bbrc.2018.01.024
[20] Zhu JL,Zhou L,Li TF,Ruan YY,Zhang A,et al. Genome-wide investigation and characterization of SWEET gene family with focus on their evolution and expression during hormone and abiotic stress response in maize[J]. Genes,2022,13(10):1682. doi: 10.3390/genes13101682
[21] Dai ZR,Yan PY,He SZ,Jia LC,Wang YN,et al. Genome-wide identification and expression analysis of SWEET family genes in sweet potato and its two diploid relatives[J]. Int J Mol Sci,2022,23(24):15848. doi: 10.3390/ijms232415848
[22] Yao TS,Xie RJ,Zhou Y,Hu JH,Gao Y,Zhou CY. Genome-wide identification of SWEET gene family and its response to abiotic stresses in Valencia sweet orange[J]. Plant Mol Biol Rep,2021,39(3):546−556. doi: 10.1007/s11105-020-01268-1
[23] Jiang SJ,Balan B,de A. B. Assis R,Sagawa CHD,Wan XQ,et al. Genome-wide profiling and phylogenetic analysis of the SWEET sugar transporter gene family in walnut and their lack of responsiveness to Xanthomonas arboricola pv. juglandis infection[J]. Int J Mol Sci,2020,21(4):1251. doi: 10.3390/ijms21041251
[24] Hu LP,Zhang F,Song SH,Tang XW,Xu H,et al. Genome-wide identification,characterization,and expression analysis of the SWEET gene family in cucumber[J]. J Integr Agric,2017,16(7):1486−1501. doi: 10.1016/S2095-3119(16)61501-0
[25] Li JM,Qin MF,Qiao X,Cheng YS,Li XL,et al. A new insight into the evolution and functional divergence of sweet transporters in Chinese white pear (Pyrus bretschneideri)[J]. Plant Cell Physiol,2017,58(4):839−850. doi: 10.1093/pcp/pcx025
[26] Wen ZY,Li MY,Meng J,Li P,Cheng TR,et al. Genome-wide identification of the SWEET gene family mediating the cold stress response in Prunus mume[J]. PeerJ,2022,10:e13273. doi: 10.7717/peerj.13273
[27] Sui JL,Xiao XH,Qi JY,Fang YJ,Tang CR. The SWEET gene family in Hevea brasiliensis-its evolution and expression compared with four other plant species[J]. FEBS Open Bio,2017,7(12):1943−1959. doi: 10.1002/2211-5463.12332
[28] Zhang XH,Wang S,Ren Y,Gan CY,Li BB,et al. Identification,analysis and gene cloning of the SWEET gene family provide insights into sugar transport in pomegranate (Punica granatum)[J]. Int J Mol Sci,2022,23(5):2471. doi: 10.3390/ijms23052471
[29] Fang T,Rao Y,Wang MZ,Li Y,Liu YJ,et al. Characterization of the SWEET gene family in longan (Dimocarpus longan) and the role of DlSWEET1 in cold tolerance[J]. Int J Mol Sci,2022,23(16):8914. doi: 10.3390/ijms23168914
[30] Han X,Zhang YL,Zhang Q,Ma N,Liu XY,et al. Two haplotype-resolved,gap-free genome assemblies for Actinidia latifolia and Actinidia chinensis shed light on the regulatory mechanisms of vitamin C and sucrose metabolism in kiwifruit[J]. Mol Plant,2023,16(2):452−470. doi: 10.1016/j.molp.2022.12.022
[31] Chen CJ,Chen H,Zhang Y,Thomas HR,Frank MH,et al. TBtools:an integrative toolkit developed for interactive analyses of big biological data[J]. Mol Plant,2020,13(8):1194−1202. doi: 10.1016/j.molp.2020.06.009
[32] Ampomah-Dwamena C,McGhie T,Wibisono R,Montefiori M,Hellens RP,Allan AC. The kiwifruit lycopene beta-cyclase plays a significant role in carotenoid accumulation in fruit[J]. J Exp Bot,2009,60(13):3765−3779. doi: 10.1093/jxb/erp218
[33] Zhao K,Chen S,Yao WJ,Cheng ZH,Zhou BR,Jiang TB. Genome-wide analysis and expression profile of the bZIP gene family in poplar[J]. BMC Plant Biol,2021,21(1):122. doi: 10.1186/s12870-021-02879-w
[34] Yang JJ,Zhan RL,Jin YR,Song JY,Li DX,et al. Functional analysis of the promoter of the MdFRK2 gene encoding a high-affinity fructokinase in apple (Malus × domestica)[J]. Sci Hortic,2020,265:109088. doi: 10.1016/j.scienta.2019.109088
[35] Xu XH,Li WL,Yang SK,Zhu XZ,Sun HW,et al. Identification,evolution,expression and protein interaction analysis of genes encoding B-box zinc-finger proteins in maize[J]. J Integr Agric,2023,22(2):371−388. doi: 10.1016/j.jia.2022.08.091
-
其他相关附件
-
PDF格式
郑帅-附件 点击下载(401KB)
-