Regulatory effects of fertilization on root morphology and needle physiological characteristics of Pinus armandii Franch. container seedlings
-
摘要:
以华山松(Pinus armandii Franch.)容器苗为材料,设置常规施肥和指数施肥两种施肥方式,每种施肥方式每株共施含氮(N)量为100、200、300和400 mg的复合肥,以不施肥处理为对照,分析施肥对苗木生长、根系形态和针叶生理的影响。结果显示:常规和指数施肥方式下,随施肥量的增加,苗高、地径、生物量、根长、根表面积和根体积等均先增后降,根组织密度、可溶性糖和丙二醛含量则先降后升;比根长和比表面积随施肥量增加而降低;根平均直径、脯氨酸和可溶性蛋白含量则随施肥量增加而增加;相同施肥量下,以上指标基本以指数施肥的较高;指数施肥每株施N 300 mg(E300处理)的隶属函数综合得分最高。研究结果表明,合理施肥可促进根系发育、改善苗木生理水平,进而提高苗木质量,合理施肥处理为E300。
Abstract:This study explored the growth, root morphology, and physiological characteristics of Pinus armandii Franch. container seedlings under different fertilization treatments to reveal the regulatory effects of fertilization on seedling quality. The P. armandii container seedlings were grown under four fertilizer rates (100, 200, 300, and 400 mg N/seedling) with either conventional or exponential fertilization, with no fertilization serving as a control. The effects of fertilization on growth, root morphology, and physiological characteristics were then analyzed. Results showed that under both conventional and exponential fertilization, seedling height, root collar diameter, biomass, root length, root surface area, and root volume all initially increased and then decreased, while root tissue density and soluble sugar and malondialdehyde contents initially decreased and then increased with the increase in fertilizer application rates. Furthermore, as fertilizer application increased, specific root length and specific surface area decreased while root average diameter and free proline and soluble protein contents increased. Most indices were higher under exponential fertilization than conventional fertilization at the same fertilizer rate. The E300 treatment (exponential fertilization at 300 mg N per plant) yielded the highest comprehensive score. In conclusion, rational fertilization promoted seedling growth and root development and improved the physiology of P. armandii container seedlings, with the optimal fertilization treatment being exponential fertlization at 300 mg N per plant.
-
-
表 1 实验处理及施肥安排表
Table 1 Treatment and fertilization schedule
施肥时间
TimeCK 常规施肥
Conventional fertilization / mg/plant指数施肥
Exponential fertilization / mg/plantC100 C200 C300 C400 E100 E200 E300 E400 4月3日 0.0 8.3 16.7 25.0 33.3 1.0 1.2 1.4 1.5 4月17日 0.0 8.3 16.7 25.0 33.3 1.3 1.7 2.0 2.2 5月1日 0.0 8.3 16.7 25.0 33.3 1.8 2.5 3.0 3.3 5月15日 0.0 8.3 16.7 25.0 33.3 2.4 3.6 4.4 5.0 5月29日 0.0 8.3 16.7 25.0 33.3 3.3 5.1 6.4 7.6 6月12日 0.0 8.3 16.7 25.0 33.3 4.4 7.2 9.5 11.5 6月26日 0.0 8.3 16.7 25.0 33.3 6.0 10.3 14.0 17.4 7月10日 0.0 8.3 16.7 25.0 33.3 8.0 14.2 20.6 25.5 7月24日 0.0 8.3 16.7 25.0 33.3 9.9 20.4 27.4 36.2 8月7日 0.0 8.3 16.7 25.0 33.3 14.6 29.8 44.8 59.7 8月21日 0.0 8.3 16.7 25.0 33.3 19.7 42.5 66.1 90.1 9月3日 0.0 8.3 16.7 25.0 33.3 26.5 60.6 97.4 136.0 总施氮量 0.0 100.0 200.0 300.0 400.0 100.0 200.0 300.0 400.0 表 2 施肥对华山松容器苗根系形态的影响
Table 2 Effects of fertilization on root morphology of Pinus armandii container seedlings
处理
Treatment根表面积
Root surface area /cm2比表面积
Specific surface area / cm2/g根体积
Root volume / cm3组织密度
Tissue density / g/cm平均直径
Average diameter / mmCK 42.0 ± 4.4b 187.2 ± 9.3a 0.196 ± 0.014c 1.107 ± 0.047b 0.274 ± 0.013e C100 44.9 ± 5.0ab 161.1 ± 6.5b 0.303 ± 0.017b 0.897 ± 0.021cd 0.314 ± 0.025d C200 48.9 ± 2.0ab 145.2 ± 4.0bc 0.368 ± 0.016ab 0.754 ± 0.033d 0.447 ± 0.026bc C300 24.8 ± 1.7bc 113.4 ± 6.6d 0.215 ± 0.012bc 1.034 ± 0.027bc 0.496 ± 0.011b C400 16.7 ± 1.1c 89.0 ± 5.0e 0.159 ± 0.014c 1.233 ± 0.023a 0.603 ± 0.014a E100 43.6 ± 2.6ab 165.5 ± 7.2b 0.262 ± 0.014bc 1.094 ± 0.087b 0.295 ± 0.017de E200 43.8 ± 3.5ab 157.1 ± 6.0b 0.299 ± 0.014b 0.960 ± 0.029c 0.378 ± 0.026c E300 51.8 ± 3.4a 171.0 ± 5.3ab 0.415 ± 0.015a 0.731 ± 0.019d 0.473 ± 0.022b E400 32.7 ± 2.2bc 137.9 ± 4.6c 0.263 ± 0.017bc 0.949 ± 0.038c 0.660 ± 0.023a 效应 R ** ** ** ns ns L ** ** ** ** ** R × L ** ** ** * ns 注:不同小写字母表示同列不同处理间差异显著(P < 0.05)。“*”表示影响显著(P < 0.05),“**”表示影响极显著 (P < 0.01),“ns”表示影响不显著(P ≥ 0.05)。下同。 Notes: Different lowercase letters in the same column indicate significant difference (P < 0.05). “*” indicates significant effect (P < 0.05), “**” indicates extremely significant effect (P < 0.01), “ns” indicates no significant effect (P ≥ 0.05). Same below. 表 3 施肥对华山松容器苗根长的影响
Table 3 Effects of fertilization on root length of Pinus armandii container seedlings
处理
Treatment小细根长
Capillary root
length / cm细根长
Fine root
length / cm总根长
Total root
length / cm小细根长比
Proportion of capillary
root length / %比根长
Specific root
length / cm/gCK 185.9 ± 13.4b 29.6 ± 2.4d 215.5 ± 14.0b 86.2 ± 10.2a 1103.9 ± 44.3a C100 205.4 ± 14.3ab 61.1 ± 6.7bc 266.6 ± 20.2ab 77.1 ± 5.8ab 958.4 ± 31.4b C200 147.7 ± 8.2bc 77.8 ± 4.9b 225.5 ± 10.0b 65.5 ± 7.5b 845.3 ± 22.7bc C300 65.9 ± 4.1c 60.3 ± 3.9bc 126.3 ± 6.2c 52.3 ± 5.6c 584.5 ± 31.8c C400 34.9 ± 2.7d 41.1 ± 2.4c 76.0 ± 4.3d 45.9 ± 3.3d 422.7 ± 38.5d E100 228.8 ± 12.6a 42.6 ± 2.4c 271.4 ± 12.3ab 84.3 ± 8.0a 1039.1 ± 35.4b E200 217.9 ± 13.8a 68.6 ± 5.7bc 296.6 ± 17.7a 76.9 ± 4.9ab 1004.5 ± 39.2b E300 180.8 ± 9.1b 110.1 ± 13.0a 291.0 ± 14.3a 60.8 ± 6.1b 976.0 ± 30.0b E400 62.6 ± 4.3c 83.3 ± 9.3b 146.0 ± 11.2c 43.0 ± 5.7d 612.9 ± 29.3c 效应 R ** ** ** ns ** L ** ** ** ** ** R × L ** ** ** ns ** 表 4 施肥对华山松容器苗光合色素含量的影响
Table 4 Effects of fertilization on photosynthetic pigment content in Pinus armandii container seedlings
处理
Treatment叶绿素a
Chlorophyll a / mg/g FW叶绿素b
Chlorophyll b / mg/g FW总叶绿素
Total chlorophyll / mg/g FW类胡萝卜素
Carotenoid / mg/g FWCK 0.962 ± 0.023b 0.346 ± 0.020a 1.31 ± 0.04b 0.291 ± 0.012ab C100 1.101 ± 0.048ab 0.346 ± 0.010a 1.45 ± 0.06ab 0.290 ± 0.014ab C200 1.008 ± 0.081ab 0.332 ± 0.023ab 1.34 ± 0.10ab 0.289 ± 0.026ab C300 0.800 ± 0.086bc 0.267 ± 0.023c 1.07 ± 0.11bc 0.245 ± 0.022bc C400 0.728 ± 0.082c 0.243 ± 0.024c 0.97 ± 0.11c 0.221 ± 0.021c E100 1.159 ± 0.040a 0.357 ± 0.014a 1.52 ± 0.05a 0.333 ± 0.011a E200 1.132 ± 0.078a 0.371 ± 0.024a 1.50 ± 0.10a 0.325 ± 0.019a E300 1.034 ± 0.062ab 0.350 ± 0.019a 1.38 ± 0.08ab 0.309 ± 0.028ab E400 0.944 ± 0.046b 0.285 ± 0.013b 1.23 ± 0.06b 0.256 ± 0.006b 效应 R ** ** ** ** L ** ** ** ** R × L ns ns ns ns 表 5 施肥对华山松容器苗渗透调节物质含量的影响
Table 5 Effects of fertilization on content of osmotic regulation substances in Pinus armandii container seedlings
处理
Treatment可溶性糖
Soluble sugar / mg/g DW游离脯氨酸
Free proline / mg/g FW可溶性蛋白
Soluble protein / mg/g FW丙二醛
MDA / mg/g FWCK 72.3 ± 2.9a 0.0320 ± 0.0040c 0.353 ± 0.049d 46.6 ± 4.9b C100 58.2 ± 6.5b 0.0409 ± 0.0021b 0.410 ± 0.015cd 38.2 ± 4.1bc C200 48.1 ± 2.6bc 0.0561 ± 0.0051ab 0.491 ± 0.062c 33.2 ± 2.0c C300 44.4 ± 2.1c 0.0614 ± 0.0051ab 0.560 ± 0.031bc 42.7 ± 3.3b C400 58.1 ± 1.7b 0.0633 ± 0.0031ab 0.569 ± 0.026bc 53.0 ± 4.7ab E100 47.5 ± 3.8bc 0.0611 ± 0.0020ab 0.648 ± 0.020ab 28.0 ± 4.8d E200 43.1 ± 3.9c 0.0612 ± 0.0053ab 0.583 ± 0.047b 30.1 ± 3.3c E300 46.4 ± 2.4bc 0.0689 ± 0.0056a 0.651 ± 0.052b 44.5 ± 3.4b E400 54.2 ± 1.1bc 0.0711 ± 0.0085a 0.761 ± 0.043a 69.2 ± 5.4a 效应 R ns ** * ns L ** ** ** ** R × L ns ns ns * 表 6 华山松苗木生长、根系形态及生理效应隶属度分析
Table 6 Membership degree analysis of growth, root morphology, and physiological properties
指标 Index CK C100 C200 C300 C400 E100 E200 E300 E400 苗高 0.00 0.63 0.69 0.97 0.81 0.19 0.50 1.00 0.84 地径 0.00 0.42 0.72 0.56 0.22 0.11 0.67 1.00 0.47 生物量 0.00 0.64 0.78 0.55 0.23 0.50 0.68 1.00 0.66 毛细根长 0.88 0.83 0.58 0.16 0.00 1.00 0.89 0.75 0.14 细根长 0.00 0.39 0.60 0.38 0.14 0.16 0.48 1.00 0.67 总根长 0.74 0.84 0.70 0.23 0.00 0.91 0.93 1.00 0.33 比根长 1.00 0.78 0.61 0.23 0.00 0.89 0.84 0.80 0.28 根表面积 0.72 0.81 0.63 0.23 0.00 0.77 0.77 1.00 0.46 比表面积 1.00 0.73 0.57 0.25 0.00 0.78 0.69 0.83 0.50 根体积 0.15 0.56 0.82 0.22 0.00 0.40 0.55 1.00 0.41 组织密度 0.74 0.33 0.05 0.60 0.99 0.72 0.45 0.00 0.43 平均直径 0.00 0.18 0.67 0.82 1.00 0.06 0.62 0.83 1.11 叶绿素a 0.54 0.86 0.65 0.17 0.00 1.00 0.94 0.71 0.50 叶绿素b 0.81 0.80 0.69 0.19 0.00 0.89 1.00 0.84 0.33 总叶绿素 0.62 0.87 0.67 0.18 0.00 1.00 0.97 0.76 0.47 类胡萝卜素 0.63 0.61 0.61 0.21 0.00 1.00 0.93 0.78 0.31 可溶性糖 1.00 0.52 0.17 0.04 0.51 0.15 0.00 0.11 0.38 脯氨酸 0.00 0.23 0.62 0.75 0.80 0.74 0.74 0.94 1.00 可溶性蛋白 0.00 0.14 0.34 0.51 0.53 0.72 0.56 0.73 1.00 丙二醛 0.55 0.75 0.87 0.89 0.39 1.00 0.95 0.60 0.00 均值 0.469 0.595 0.602 0.406 0.282 0.650 0.709 0.784 0.514 排序 7 4 5 8 9 3 2 1 6 -
[1] 中国科学院昆明植物研究所. 云南植物志(第11卷-种子植物)[M]. 北京: 科学出版社, 2000: 83-87. [2] 中国科学院中国植物志编辑委员会. 中国植物志: 第7卷[M]. 北京: 科学出版社, 1978: 217. [3] 王若楠,白吉庆,王玛丽,阎晓昊,董鹏斌,等. 中国特有森林树种华山松的群体进化历史研究[J]. 西北植物学报,2019,39(1):42−51. Wang RN,Bai JQ,Wang ML,Yan XH,Dong PB,et al. Evolutionary history of an endemic conifer tree Pinus armandii in China[J]. Acta Botanica Boreali-Occidentalia Sinica,2019,39 (1):42−51.
[4] Grossnickle SC. Why seedlings survive:influence of plant attributes[J]. New Forests,2012,43 (5):711−738.
[5] 李国雷,刘勇,祝燕,蒋乐,史文辉. 国外容器苗质量调控技术研究进展[J]. 林业科学,2012,48(8):135−142. Li GL,Liu Y,Zhu Y,Jiang L,Shi WH. A review on the abroad studies of techniques in regulating quality of container seedling[J]. Scientia Silvae Sinicae,2012,48 (8):135−142.
[6] Ingestad T,Lund AB. Theory and techniques for steady state mineral nutrition and growth of plants[J]. Scand J Forest Res,1986,1 (1-4):439−453. doi: 10.1080/02827588609382436
[7] Timmer VR. Exponential nutrient loading:a new fertilization technique to improve seedling performance on competitive sites[J]. New Forests,1997,13 (1-3):279−299. doi: 10.1023/A:1006502830067
[8] Pokharel P,Kwak JH,Chang SX. Growth and nitrogen uptake of jack pine seedlings in response to exponential fertilization and weed control in reclaimed soil[J]. Biol Fertil Soils,2017,53 (6):701−713. doi: 10.1007/s00374-017-1213-1
[9] Uscola M,Salifu KF,Oliet JA,Jacobs DF. An exponential fertilization dose−response model to promote restoration of the Mediterranean oak Quercus ilex[J]. New Forests,2015,46 (5):795−812.
[10] Hu YL,Fan HH,Xuan HF,Mgelwa AS,Chen SP. Distinct growth and nutrient status responses to fertilization regimes in two generations of Chinese fir seedlings[J]. Forests,2019,10 (9):719. doi: 10.3390/f10090719
[11] 郝龙飞,刘婷岩,张连飞,贾斌英,李宁,李开隆. 氮素指数施肥对白桦播种苗养分承载和光合作用的影响[J]. 北京林业大学学报,2014,36(6):17−23. Hao LF,Liu TY,Zhang LF,Jia BY,Li N,Li KL. Effects of N exponential fertilization on nutrient loading and photosynthesis of Betula platyphylla seedlings[J]. Journal of Beijing Forestry University,2014,36 (6):17−23.
[12] 王益明,卢艺,张慧,鞠昌华,裴文明,等. 指数施肥对美国山核桃幼苗生长及叶片养分含量的影响[J]. 中国土壤与肥料,2018(6):136−140. Wang YM,Lu Y,Zhang H,Ju CH,Pei WM,et al. Effects of exponential fertilization on growth and foliar nutrient status of pecan seedlings[J]. Soils and Fertilizers Sciences in China,2018 (6):136−140.
[13] 闫小莉,林智熠,胡文佳,马祥庆,曲鲁平. 杉木根系形态特征及其觅养策略研究进展[J]. 世界林业研究,2022,35(1):26−31. Yan XL,Lin ZY,Hu WJ,Ma XQ,Qu LP. Root morphological characteristics of Cunninghamia lanceolata and its foraging strategies[J]. World Forestry Research,2022,35 (1):26−31.
[14] 王妍,冯金玲,吴小慧,黄蓝明,吴娟,等. 施肥对闽楠根系形态及苗木质量的调控作用[J]. 西北农林科技大学学报(自然科学版),2022,50(10):44−56. Wang Y,Feng JL,Wu XH,Huang LM,Wu J,et al. Effects of fertilization on root morphology and seedling quality of Phoebe bournei[J]. Journal of Northwest A& F University (Natural Sciences Edition)
,2022,50 (10):44−56. [15] 程洁茹, 钟全林, 邹宇星, 常云妮, 廖鹏飞. 氮磷配施对刨花楠幼苗相对生长速率与细根性状关系的影响[J/OL]. 生态学杂志, 2022. https://kns.cnki.net/kcms/detail/21.1148.Q.20221008.1539.002.html. Cheng JR, Zhong QL, Zou YX, Chang YN, Liao PF. Effects of different ratios of nitrogen and phosphorus addition on the relationship between the relative growth rate and fine root traits of Machilus pauhoi seedlings[J/OL]. Chinese Journal of Ecology, 2022. https://kns.cnki.net/kcms/detail/21.1148.Q.20221008.1539.002.html.
[16] 杨阳,张德鹏,及利,张洁,杨立学. 配比施肥对紫椴播种苗生长、养分积累及根系形态的影响[J]. 中南林业科技大学学报,2021,41(9):63−70. Yang Y,Zhang DP,Ji L,Zhang J,Yang LX. Effects of formula fertilization on growth,nutrient accumulation and root morphology of Tilia amurensis seedlings[J]. Journal of Central South University of Forestry & Technology,2021,41 (9):63−70.
[17] Wang GL,Liu F,Xue S. Nitrogen addition enhanced water uptake by affecting fine root morphology and coarse root anatomy of Chinese pine seedlings[J]. Plant Soil,2017,418 (1):177−189.
[18] Ni M,Gao ZZ,Chen H,Chen C,Yu FY. Exponential fertilization regimes improved growth and nutrient status of Quercus nuttallii container seedlings[J]. Agronomy,2022,12 (3):669. doi: 10.3390/agronomy12030669
[19] 荣俊冬,凡莉莉,陈礼光,张迎辉,何天友,等. 不同施氮模式和施氮量对福建柏幼苗生物量分配和根系生长的影响[J]. 林业科学,2020,56(7):175−184. Rong JD,Fan LL,Chen LG,Zhang YH,He TY,et al. Impacts on biomass allocation and root growth of Fokienia hodginsii seedlings of different patterns and quantities of nitrogen application[J]. Scientia Silvae Sinicae,2020,56 (7):175−184.
[20] 周樊,陈文静,曹凡,冯刚,李永荣,彭方仁. 配比施肥对薄壳山核桃幼苗生长和生理特性的影响[J]. 中南林业科技大学学报,2020,40(9):96−103. Zhou F,Chen WJ,Cao F,Feng G,Li YR,Peng FR. Effects of fertilization on growth and physiological characteristics of pecan seedlings[J]. Journal of Central South University of Forestry & Technology,2020,40 (9):96−103.
[21] 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000: 17-90. [22] 马道承, 余注光, 王凌晖, 林泳志, 潘媛媛. 氮磷钾配比施肥对赤苍藤生理及生物量积累的影响[J]. 植物科学学报, 2022, 40(6): 839-852. Ma DC, Yu ZG, Wang LH, Lin YZ, Pan YY. Effects of nitrogen-phosphorus-potassium ratio fertilization on physiology and biomass accumulation of Erythropalum scandens Bl. [J]. Plant Science Journal, 40(6): 839-852.
[23] 乔栋,刘勇,田书勇,张锋,冯雪瑾,等. 不同土壤水势对毛白杨苗木生长节律和苗木质量的影响[J]. 北京林业大学学报,2022,44(4):12−23. Qiao D,Liu Y,Tian SY,Zhang F,Feng XJ,et al. Effects of different soil water potentials on seedling growth rhythm and seedling quality of Populus tomentosa[J]. Journal of Beijing Forestry University,2022,44 (4):12−23.
[24] 王苗苗,刘勇,李国雷,彭玉信,刘春和,等. 秋季施肥对毛白杨苗木质量、造林效果和养分回流的影响[J]. 林业科学,2021,57(7):51−60. Wang MM,Liu Y,Li GL,Peng YX,Liu CH,et al. Effects of autumn fertilization on quality,field performance and nutrient resorption of Populus tomentosa seedling[J]. Scientia Silvae Sinicae,2021,57 (7):51−60.
[25] 杨阳,施皓然,及利,杨立学. 指数施肥对紫椴实生苗生长和根系形态的影响[J]. 南京林业大学学报(自然科学版),2020,44(2):91−97. Yang Y,Shi HR,Ji L,Yang LX. Effects of exponential fertilization on growth and root morphology of Tilia amurensis seedlings[J]. Journal of Nanjing Forestry University (Natural Sciences Edition)
,2020,44 (2):91−97. [26] 王燕,晏紫依,苏艳,何茜,李吉跃,等. 不同施肥方法对欧洲云杉生长生理和根系形态的影响[J]. 西北林学院学报,2015,30(6):15−21. Wang Y,Yan ZY,Su Y,He Q,Li JY,et al. Effects of different fertilizing methods on growth,physiological characteristics and root morphological traits of Picea abies[J]. Journal of Northwest Forestry University,2015,30 (6):15−21.
[27] Montagnoli A,Terzaghi M,Di Iorio A,Scippa GS,Chiatante D. Fine-root morphological and growth traits in a Turkey-oak stand in relation to seasonal changes in soil moisture in the Southern Apennines,Italy[J]. Ecol Res,2012,27 (6):1015−1025. doi: 10.1007/s11284-012-0981-1
[28] Margolis HA,Waring RH. Carbon and nitrogen allocation patterns of Douglas-fir seedlings fertilized with nitrogen in autumn. Ⅰ. Overwinter metabolism[J]. Can J Forest Res,1986,16 (5):897−902. doi: 10.1139/x86-160
[29] Hong Z,Guo JY,Zhang NN,Yang ZJ,Liu XJ,et al. Polysaccharide,proline,and anti-oxidation enzyme activities of Thailand rosewood (Dalbergia cochinchinensis) seedlings exposed to exponential fertilization[J]. J Forest Res,2022,33 (1):75−87. doi: 10.1007/s11676-021-01300-4
[30] 王睿照,毛沂新,云丽丽,尤文忠,张慧东. 氮添加对蒙古栎叶片碳氮磷化学计量与非结构性碳水化合物的影响[J]. 生态学杂志,2022,41(7):1369−1377. Wang RZ,Mao YX,Yun LL,You WZ,Zhang HD. Effects of nitrogen addition on leaf carbon,nitrogen and phosphorus stoichiometry and nonstructural carbohydrates in Mongolian oak (Quercus mongolica) stands[J]. Chinese Journal of Ecology,2022,41 (7):1369−1377.
[31] 唐新瑶,亢亚超,梁喜献,马道承,王凌晖. 氮磷钾配比施肥对观光木幼苗生理与光合特性的影响[J]. 西北林学院学报,2022,37(4):37−42. Tang XY,Kang YC,Liang XX,Ma DC,Wang LH. Effects of N,P and K proportional fertilization on the physiological and photosynthetic characteristics of Tsoongiodendron odorum seedlings[J]. Journal of Northwest Forestry University,2022,37 (4):37−42.