高级检索+

千穗谷MTP基因家族生信分析及镉胁迫下的表达特征

刘霄霏, 甘锦鑫, 周涛, 张伏中, 刘宁芳, 卢蕊, 胡龙兴, 徐倩

刘霄霏,甘锦鑫,周涛,张伏中,刘宁芳,卢蕊,胡龙兴,徐倩. 千穗谷MTP基因家族生信分析及镉胁迫下的表达特征[J]. 植物科学学报,2023,41(4):467−478. DOI: 10.11913/PSJ.2095-0837.22279
引用本文: 刘霄霏,甘锦鑫,周涛,张伏中,刘宁芳,卢蕊,胡龙兴,徐倩. 千穗谷MTP基因家族生信分析及镉胁迫下的表达特征[J]. 植物科学学报,2023,41(4):467−478. DOI: 10.11913/PSJ.2095-0837.22279
Liu XF,Gan JX,Zhou T,Zhang FZ,Liu NF,Lu R,Hu LX,Xu Q. Bioinformatics analysis of the MTP gene family in Amaranthus hypochondriacus L. and expression characteristics under cadmium stress[J]. Plant Science Journal,2023,41(4):467−478. DOI: 10.11913/PSJ.2095-0837.22279
Citation: Liu XF,Gan JX,Zhou T,Zhang FZ,Liu NF,Lu R,Hu LX,Xu Q. Bioinformatics analysis of the MTP gene family in Amaranthus hypochondriacus L. and expression characteristics under cadmium stress[J]. Plant Science Journal,2023,41(4):467−478. DOI: 10.11913/PSJ.2095-0837.22279
刘霄霏,甘锦鑫,周涛,张伏中,刘宁芳,卢蕊,胡龙兴,徐倩. 千穗谷MTP基因家族生信分析及镉胁迫下的表达特征[J]. 植物科学学报,2023,41(4):467−478. CSTR: 32231.14.PSJ.2095-0837.22279
引用本文: 刘霄霏,甘锦鑫,周涛,张伏中,刘宁芳,卢蕊,胡龙兴,徐倩. 千穗谷MTP基因家族生信分析及镉胁迫下的表达特征[J]. 植物科学学报,2023,41(4):467−478. CSTR: 32231.14.PSJ.2095-0837.22279
Liu XF,Gan JX,Zhou T,Zhang FZ,Liu NF,Lu R,Hu LX,Xu Q. Bioinformatics analysis of the MTP gene family in Amaranthus hypochondriacus L. and expression characteristics under cadmium stress[J]. Plant Science Journal,2023,41(4):467−478. CSTR: 32231.14.PSJ.2095-0837.22279
Citation: Liu XF,Gan JX,Zhou T,Zhang FZ,Liu NF,Lu R,Hu LX,Xu Q. Bioinformatics analysis of the MTP gene family in Amaranthus hypochondriacus L. and expression characteristics under cadmium stress[J]. Plant Science Journal,2023,41(4):467−478. CSTR: 32231.14.PSJ.2095-0837.22279

千穗谷MTP基因家族生信分析及镉胁迫下的表达特征

基金项目: 湖南省研究生创新项目(CX20200674);湖南省教育厅项目(21A0126);长沙市自然科学基金项目(kq2202228)
详细信息
    作者简介:

    刘霄霏(1996−),女, 硕士研究生,研究方向为草坪和牧草逆境分子生理 (E-mail:1825436030@qq.com

    通讯作者:

    胡龙兴: E-mail:grass@hunau.edu.cn

    徐倩: xuqian@hunau.edu.cn

  • 中图分类号: Q943.2

Bioinformatics analysis of the MTP gene family in Amaranthus hypochondriacus L. and expression characteristics under cadmium stress

Funds: This work was supported by grants from the Graduate Innovation Project of Hunan Province (CX20200674), Earmarked Hunan Provincial Education Department Project (21A0126), and Natural Science Foundation of Changsha (kq2202228).
  • 摘要:

    MTP(Metal tolerance protein)又称CDF(Cation diffusion facilitator),是与金属离子转运相关的一类蛋白。为了研究千穗谷(Amaranthus hypochondriacus L.)MTP基因家族的序列特征和进化关系,预测其不同成员的功能和调控机制,我们以最新的千穗谷基因组为参考,鉴定出9个MTP家族成员,分为Zn-CDF(3个)、Zn/Fe-CDF(4个)、Mn-CDF(4个)3个亚族。所有家族成员均具有MTP转运蛋白的典型结构域Cation_efflux,部分成员还包含1个ZT_dimer结构域。染色体定位显示,9个MTP基因分布在7条染色体上。Cd胁迫下,AhMTP7AhMTP9在根和叶中的表达均被抑制,AhMTP6在叶中被抑制,在根中却被诱导;其余6个MTP基因均受Cd诱导表达,AhMTP2AhMTP3仅在叶中被诱导,AhMTP5仅在根中被诱导。顺式作用元件分析结果显示,AhMTP启动子中存在多个逆境响应、生长发育和激素信号的顺式作用元件。miRNA预测分析结果表明,15个miRNA靶向7个AhMTP成员。

    Abstract:

    Metal tolerance protein (MTP), also known as cation diffusion facilitator (CDF), is a metal ion transport-related protein. To study the sequence characteristics and evolutionary relationships of the MTP gene family in Amaranthus hypochondriacus L., and to predict the functions and regulatory mechanisms of its members, we took the latest A. hypochondriacus genome as a reference and identified a total of nine members of the A. hypochondriacus MTP family. According to their sequence characteristics, they were divided into three subgroups: Zn-CDF (3), Zn/Fe-CDF (4), and Mn-CDF (4). All family members contained a cation_efflux domain, a typical feature of MTP transporters, with some also containing a ZT_dimer domain. Chromosome mapping showed that the nine MTP genes were distributed on seven chromosomes. Under cadmium (Cd) stress, the expression levels of AhMTP7 and AhMTP9 were inhibited in both leaves and roots, while the expression level of AhMTP6 was inhibited in leaves but induced in roots. The expression levels of the other six AhMTPs were induced by Cd, with AhMTP2 and AhMTP3 only induced in leaves, and AhMTP5 only induced in roots. Promoter cis-acting element analysis identified several cis-acting elements in the AhMTP promoter for stress response, growth and development, and hormone signaling. MicroRNA (miRNA) prediction analysis showed that 15 miRNAs targeted seven AhMTPs.

  • 1 如需查阅附件内容请登录《植物科学学报》网站(http://www.plantscience.cn)查看本期文章。
    21,2)如需查阅附件内容请登录《植物科学学报》网站(http://www.plantscience.cn)查看本期文章。
    3如需查阅附件内容请登录《植物科学学报》网站(http://www.plantscience.cn)查看本期文章。
  • 图  1   千穗谷、拟南芥和甜菜的MTP基因家族系统发育树

    不同颜色字体代表不同物种。黄色:拟南芥;白色:甜菜;黑色:千穗谷。不同颜色分支代表不同组,红色代表组1,绿色代表组5,黑色代表组6,亮蓝色代表组7,黄色代表组8,紫色代表组9,深蓝色代表组12。

    Figure  1.   Phylogenetic tree of Amaranthus hypochondriacus, Arabidopsis thaliana, and Beta vulgaris

    Different color fonts represent different species. Yellow for Arabidopsis thaliana, white for Beta vulgaris, and black for Amaranthus hypochondriacus; Different color branches represent different groups, red for group 1, green for group 5, black for group 6, bright blue for group 7, yellow for group 8, purple for group 9, and dark blue for group 12.

    图  2   千穗谷MTP基因结构与跨膜结构域分析

    A:AhMTPs基因结构分析;B:AhMTPs跨膜结构域分析;C:AhMTPs保守结构域分析。

    Figure  2.   MTP gene structure and transmembrane domain analysis in Amaranthus hypochondriacus

    A: Gene structure analysis of AhMTPs; B: Transmembrane domain analysis of AhMTPs; C: Conservative domain analysis of AhMTPs.

    图  3   千穗谷MTP家族成员染色体定位信息

    不同颜色代表染色体上基因密度。蓝色越深代表高密度越高。

    Figure  3.   Chromosome location information of MTP family members in Amaranthus hypochondriacus

    Different colors represent gene density on chromosomes. Deeper blue indicates higher density.

    图  4   千穗谷与其他模式植物MTP家族共线性分析

    Figure  4.   Collinearity analysis of MTP family between Amaranthus hypochondriacus and other model plants

    图  5   千穗谷MTP启动子顺式作用元件预测

    Figure  5.   Prediction of cis-acting elements in Amaranthus hypochondriacus MTP promoter

    图  6   不同组织千穗谷MTP基因表达量

    A:叶;B:根;C:花;D:未成熟种子;E:干物质混合组织;F:茎。

    Figure  6.   MTP gene expression levels in Amaranthus hypochondriacus in different tissues

    A: Leaf; B: Root; C: Flowers; D: Immature seeds; E: Dry matter mixed tissue; F: Stem.

    图  7   镉胁迫下千穗谷MTP基因在根系和叶片中的表达水平

    CK-1:对照1 h;Cd-1:镉处理1 h;CK-6:对照6 h;Cd-6:镉处理6 h。不同小写字母代表不同处理之间差异显著(P < 0.05)。

    Figure  7.   MTP gene expression levels in roots and leaves of Amaranthus hypochondriacus under Cd stress

    CK-1: Control for 1 h; Cd-1: Cadmium treatment for 1 h; CK-6: Control for 6 h; Cd-6: Cadmium treatment for 6 h. Different lowercase letters indicate significant differences between treatments (P < 0.05).

    表  1   千穗谷MTP家族成员基本信息

    Table  1   Basic information of MTP family members in Amaranthus hypochondriacus

    基因
    Gene
    登录号
    Accession number
    蛋白长度
    Protein length / aa
    基因长度
    Gene length / bp
    分子量
    Molecular weight / Da
    等电点
    Isoelectric point
    亚细胞定位
    Localization
    AhMTP1AH022184376834441127.398.75液泡
    AhMTP2AH001412830249393971.606.94细胞膜/液泡
    AhMTP3AH0222594511274749774.677.80液泡
    AhMTP4AH023492396649144899.194.87液泡
    AhMTP5AH010891417554147165.965.67液泡
    AhMTP6AH020319224610725139.539.54细胞膜/液泡
    AhMTP7AH016853205274723800.736.83液泡
    AhMTP8AH019735155470716885.615.78液泡
    AhMTP9AH006882279489531121.674.81液泡
    下载: 导出CSV
  • [1]

    Ghori NH,Ghori T,Hayat MQ,Imadi SR,Gul A,et al. Heavy metal stress and responses in plants[J]. Int J Environ Sci Technol,2019,16 (3):1807−1828. doi: 10.1007/s13762-019-02215-8

    [2] 金枫,王翠,林海建,沈亚欧,张志明,等. 植物重金属转运蛋白研究进展[J]. 应用生态学报,2010,21(7):1875−1882.

    Jin F,Wang C,Lin HJ,Shen YO,Zhang ZM,et al. Heavy metal-transport proteins in plants:a review[J]. Chinese Journal of Applied Ecology,2010,21 (7):1875−1882.

    [3]

    Fan W,Liu CY,Cao BN,Qin ML,Long DP,et al. Genome-wide identification and characterization of four gene families putatively involved in cadmium uptake,translocation and sequestration in mulberry[J]. Front Plant Sci,2018,9:879. doi: 10.3389/fpls.2018.00879

    [4]

    Gustin JL,Zanis MJ,Salt DE. Structure and evolution of the plant cation diffusion facilitator family of ion transporters[J]. BMC Evol Biol,2011,11 (1):76. doi: 10.1186/1471-2148-11-76

    [5]

    Ram H,Kaur A,Gandass N,Singh S,Deshmukh R,et al. Molecular characterization and expression dynamics of MTP genes under various spatio-temporal stages and metal stress conditions in rice[J]. PLoS One,2019,14 (5):e0217360. doi: 10.1371/journal.pone.0217360

    [6]

    Vatansever R,Filiz E,Eroglu S. Genome-wide exploration of metal tolerance protein (MTP) genes in common wheat (Triticum aestivum):insights into metal homeostasis and biofortification[J]. BioMetals,2017,30 (2):217−235. doi: 10.1007/s10534-017-9997-x

    [7]

    Fu XZ,Tong YH,Zhou X,Ling LL,Chun CP,et al. Genome-wide identification of sweet orange (Citrus sinensis) metal tolerance proteins and analysis of their expression patterns under zinc,manganese,copper,and cadmium toxicity[J]. Gene,2017,629:1−8. doi: 10.1016/j.gene.2017.07.072

    [8]

    Gao YF,Yang FM,Liu JK,Xie W,Zhang L,et al. Genome-wide identification of metal tolerance protein genes in Populus trichocarpa and their roles in response to various heavy metal stresses[J]. Int J Mol Sci,2020,21 (5):1680. doi: 10.3390/ijms21051680

    [9]

    El-Sappah AH,Elbaiomy RG,Elrys AS,Wang Y,Zhu YM,et al. Genome-wide identification and expression analysis of metal tolerance protein gene family in Medicago truncatula under a broad range of heavy metal stress[J]. Front Genet,2021,12:713224. doi: 10.3389/fgene.2021.713224

    [10] 朱雄萌,蒋昕晨,席克勇,杨静,尹军良,朱永兴. 黄瓜MTP基因家族分析及重金属胁迫下表达特征[J]. 西北植物学报,2021,41(6):933−943.

    Zhu XM,Jiang XC,Xi KY,Yang J,Yin JL,Zhu YX. Analysis of MTP gene family and expression characteristics under heavy metal stress in cucumber[J]. Acta Botanica Boreali-Occidentalia Sinica,2021,41 (6):933−943.

    [11]

    Montanini B,Blaudez D,Jeandroz S,Sanders D,Chalot M. Phylogenetic and functional analysis of the cation diffusion facilitator (CDF) family:Improved signature and prediction of substrate specificity[J]. BMC Genomics,2007,8 (1):107. doi: 10.1186/1471-2164-8-107

    [12]

    Menguer PK,Farthing E,Peaston KA,Ricachenevsky FK,Fett JP,Williams LE. Functional analysis of the rice vacuolar zinc transporter OsMTP1[J]. J Exp Bot,2013,64 (10):2871−2883. doi: 10.1093/jxb/ert136

    [13]

    Fujiwara T,Kawachi M,Sato Y,Mori H,Kutsuna N,et al. A high molecular mass zinc transporter MTP12 forms a functional heteromeric complex with MTP5 in the Golgi in Arabidopsis thaliana[J]. FEBS J,2015,282 (10):1965−1979. doi: 10.1111/febs.13252

    [14]

    Eroglu S,Meier B,von Wirén N,Peiter E. The vacuolar manganese transporter MTP8 determines tolerance to iron deficiency-induced chlorosis in Arabidopsis[J]. Plant Physiol,2016,170 (2):1030−1045. doi: 10.1104/pp.15.01194

    [15]

    Chen ZH,Fujii Y,Yamaji N,Masuda S,Takemoto Y,et al. Mn tolerance in rice is mediated by MTP8.1,a member of the cation diffusion facilitator family[J]. J Exp Bot,2013,64 (14):4375−4387. doi: 10.1093/jxb/ert243

    [16]

    Zhang XY,Li QH,Xu WL,Zhao H,Guo F,et al. Identification of MTP gene family in tea plant (Camellia sinensis L. ) and characterization of CsMTP8.2 in manganese toxicity[J]. Ecotoxicol Environ Saf,2020,202:110904. doi: 10.1016/j.ecoenv.2020.110904

    [17]

    Migocka M,Papierniak A,Maciaszczyk-Dziubińska E,Poździk P,Posyniak E,et al. Retracted:Cucumber metal transport protein MTP8 confers increased tolerance to manganese when expressed in yeast and Arabidopsis thaliana[J]. J Exp Bot,2014,65 (18):5367−5384. doi: 10.1093/jxb/eru295

    [18] 吴平治,陈键,栾升,李东屏. 拟南芥CDF家族基因AtMTP6编码一个锌离子转运蛋白[J]. 生命科学研究,2006,10(3):244−247.

    Wu PZ,Chen J,Luan S,Li DP. A cation diffusion facilitator (CDF) gene AtMTP6 encodes a zinc transporter in Arabidopsis[J]. Life Science Research,2006,10 (3):244−247.

    [19] 张丹丹,程金芝. 籽粒苋在食品工业中的研究进展及前景[J]. 科技与创新,2016(23):31. doi: 10.15913/j.cnki.kjycx.2016.23.031
    [20] 周涛,彭辉,喻望晨,刘宁芳,胡龙兴,徐倩. 千穗谷TCP基因家族生物信息学分析[J]. 草地学报,2022,30(4):867−878.

    Zhou T,Peng H,Yu WC,Liu NF,Hu LX,Xu Q. Bioinformatics analysis of TCP gene family in Amaranthus hypochondriacus[J]. Acta Agrestia Sinica,2022,30 (4):867−878.

    [21]

    Yuan M,He HD,Xiao L,Zhong T,Liu H,et al. Enhancement of Cd phytoextraction by two Amaranthus species with endophytic Rahnella sp. JN27[J]. Chemosphere,2014,103:99−104. doi: 10.1016/j.chemosphere.2013.11.040

    [22]

    Chen CJ,Chen H,Zhang Y,Thomas HR,Frank MH,et al. TBtools:an integrative toolkit developed for interactive analyses of big biological data[J]. Mol Plant,2020,13 (8):1194−1202. doi: 10.1016/j.molp.2020.06.009

    [23]

    Shirazi Z,Abedi A,Kordrostami M,Burritt DJ,Hossain MA. Genome-wide identification and characterization of the metal tolerance protein (MTP) family in grape (Vitis vinifera L. )[J]. 3 Biotech,2019,9 (5):199. doi: 10.1007/s13205-019-1728-2

    [24]

    Zou T,Lin RY,Pu L,Mei QM,Wang ZF,et al. Genome-wide identification,structure characterization,expression pattern profiling,and substrate specificity of the metal tolerance protein family in Canavalia rosea (Sw.) DC[J]. Plants,2021,10 (7):1340. doi: 10.3390/plants10071340

    [25]

    Xie T,Yang WJ,Chen X,Rong H,Wang YP,Jiang JJ. Genome-wide identification and expressional profiling of the Metal Tolerance Protein gene family in Brassica napus[J]. Genes,2022,13 (5):761. doi: 10.3390/genes13050761

    [26]

    Liu JK,Gao YF,Tang YL,Wang D,Chen XM,et al. Genome-wide identification,comprehensive gene feature,evolution,and expression analysis of plant metal tolerance proteins in tobacco under heavy metal toxicity[J]. Front Genet,2019,10:345. doi: 10.3389/fgene.2019.00345

    [27]

    Papierniak-Wygladala A,Kozak K,Barabasz A,Palusińska M,Całka M,et al. Identification and characterization of a tobacco metal tolerance protein,NtMTP2[J]. Metallomics,2020,12 (12):2049−2064. doi: 10.1039/d0mt00210k

    [28] 杨蕾,卢晨,朱永兴,尹军良,方正武,马东方. 小麦MTP基因家族分析及其在胁迫下的作用[J]. 西北植物学报,2020,40(7):1123−1134.

    Yang L,Lu C,Zhu YX,Yin JL,Fang ZW,Ma DF. Bioinformatic analysis of wheat metal tolerance protein (MTP) gene family and its role under stress[J]. Acta Botanica Boreali-Occidentalia Sinica,2020,40 (7):1123−1134.

    [29]

    Kolaj-Robin O,Russell D,Hayes KA,Pembroke JT,Soulimane T. Cation diffusion facilitator family:structure and function[J]. FEBS Lett,2015,589 (12):1283−1295. doi: 10.1016/j.febslet.2015.04.007

    [30]

    Qi DZ,Wang LM,Liang MX,Zhang Q,Tang XL,et al. Genome-wide analyses of metal tolerance protein genes in apple (Malus domestica):Identification,characterization,expression and response to various metal ion stresses[J]. Environ Exp Bot,2022,201:104948. doi: 10.1016/j.envexpbot.2022.104948

    [31]

    Lin M,Yan JW,Ali MM,Wang SJ,Tian SN,et al. Isolation and functional characterization of a green-tissue promoter in japonica rice (Oryza sativa subsp. Japonica)[J]. Biology,2022,11 (8):1092. doi: 10.3390/biology11081092

    [32]

    Li ZQ,Wang CL,Wang KY,Zhao JY,Shao JR,et al. Metal tolerance protein encoding gene family in Fagopyrum tartaricum:genome-wide identification,characterization and expression under multiple metal stresses[J]. Plants,2022,11 (7):850. doi: 10.3390/plants11070850

    [33]

    Kobae Y,Uemura T,Sato MH,Ohnishi M,Mimura T,et al. Zinc transporter of Arabidopsis thaliana AtMTP1 is localized to vacuolar membranes and implicated in zinc homeostasis[J]. Plant Cell Physiol,2004,45 (12):1749−1758. doi: 10.1093/pcp/pci015

    [34]

    Arrivault S,Senger T,Krämer U. The Arabidopsis metal tolerance protein AtMTP3 maintains metal homeostasis by mediating Zn exclusion from the shoot under Fe deficiency and Zn oversupply[J]. Plant J,2006,46 (5):861−879. doi: 10.1111/j.1365-313X.2006.02746.x

    [35]

    Yuan LY,Yang SG,Liu BX,Zhang M,Wu KQ. Molecular characterization of a rice metal tolerance protein,OsMTP1[J]. Plant Cell Rep,2012,31 (1):67−79. doi: 10.1007/s00299-011-1140-9

    [36]

    Das N,Bhattacharya S,Maiti MK. Enhanced cadmium accumulation and tolerance in transgenic tobacco overexpressing rice metal tolerance protein gene OsMTP1 is promising for phytoremediation[J]. Plant Physiol Biochem,2016,105:297−309. doi: 10.1016/j.plaphy.2016.04.049

    [37]

    Jagadeeswaran G,Saini A,Sunkar R. Biotic and abiotic stress down-regulate miR398 expression in Arabidopsis[J]. Planta,2009,229 (4):1009−1014. doi: 10.1007/s00425-009-0889-3

    [38]

    Dugas DV,Bartel B. Sucrose induction of Arabidopsis miR398 represses two Cu/Zn superoxide dismutases[J]. Plant Mol Biol,2008,67 (4):403−417. doi: 10.1007/s11103-008-9329-1

    [39]

    Sunkar R,Kapoor A,Zhu JK. Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance[J]. Plant Cell,2006,18 (8):2051−2065. doi: 10.1105/tpc.106.041673

    [40]

    Burklew CE,Ashlock J,Winfrey WB,Zhang BH. Effects of aluminum oxide nanoparticles on the growth,development,and microRNA expression of tobacco (Nicotiana tabacum)[J]. PLoS One,2012,7 (5):e34783. doi: 10.1371/journal.pone.0034783

    [41]

    Lima JC,Arenhart RA,Margis-Pinheiro M,Margis R. Aluminum triggers broad changes in microRNA expression in rice roots[J]. Genet Mol Res,2011,10 (4):2817−2832. doi: 10.4238/2011.November.10.4

    [42]

    Zhou ZS,Huang SQ,Yang ZM. Bioinformatic identification and expression analysis of new microRNAs from Medicago truncatula[J]. Biochem Biophys Res Commun,2008,374 (3):538−542. doi: 10.1016/j.bbrc.2008.07.083

  • 其他相关附件

图(7)  /  表(1)
计量
  • 文章访问数:  294
  • HTML全文浏览量:  69
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-20
  • 修回日期:  2022-12-25
  • 网络出版日期:  2023-09-06
  • 刊出日期:  2023-08-30

目录

    /

    返回文章
    返回