Characteristics of Phyllostachys edulis (Carrière) J. Houz shoot morphology, branching, and leaf expansion efficiency during understory vegetation succession
-
摘要:
本研究分别选取林下植被演替前毛竹(Phyllostachys edulis (Carrière) J. Houz)纯林经营、竹材6~8年采伐一次形成的林下植被演替9、21年以及纯林(对照)等3类毛竹林,调查分析了1度、2度竹的主侧枝枝叶形态质量、抽枝展叶效率及生物量异速生长关系等。结果显示:(1)随林下植被演替的进行,1度竹主枝叶片主要形态质量性状呈降低趋势,2度竹则呈“V”型变化;(2)1度、2度竹主侧枝的枝长、纤细率显著提高,枝基径、枝干物质含量、枝干重等性状呈倒“V”型或升高趋势,枝形态变化较枝质量变化明显;(3)1度竹抽枝展叶效率指标呈“V”型变化,而2度竹主侧枝抽枝展叶效率显著降低,胡波尔值明显提高;(4)一定演替年限内,立竹主侧枝枝叶生物量生长关系从等速生长向异速生长变化,尔后恢复为等速生长。可见,林下植被演替对毛竹林立竹枝叶形态质量、抽枝展叶效率和枝叶生物量异速生长关系均产生重要影响,叶片趋于变小,枝条趋于细长,且具有明显的演替年限效应和立竹年龄效应,主要对主枝叶片产生影响,1度竹较2度竹敏感;演替过程中立竹将更多的资源投资于枝的生长,以增强空间资源的竞争能力。
Abstract:This research examined three types of moso bamboo stands: pure moso bamboo forest prior to understory vegetation succession, understory vegetation succession formed by harvesting bamboo timber once every 6–8 years over periods of 9 and 21 years, and pure forest (control). We investigated the morphological quality of the main and lateral branches and leaves, efficiency of pumping and spreading, and biomass anisotropic growth relationship of 1st- and 2nd-degree bamboo. Results showed that: (1) With the succession of understory vegetation, the primary morphological and quality traits of the main branch leaves of 1st-degree bamboo showed a downward trend, while 2nd-degree bamboo showed a significant “V”-shaped change; (2) Length and slenderness of the main and lateral branches of 1st- and 2nd-degree bamboo increased significantly, while branch diameter, branch dry matter content, and branch dry weight showed an inverted “V”-shaped or increasing trend, with the changes in branch morphology being more pronounced than those in branch quality; (3) The leaf spreading efficiency index of 1st-degree bamboo showed a “V”-shaped change, whereas that of the main and lateral branches of 2nd-degree bamboo decreased significantly, with the Huber value increasing significantly; (4) Within a certain succession period, the biomass growth relationship of the main and lateral branches of the standing bamboo transitioned from isochronous to anisotropic growth, then reverted to isochronous growth. Thus, understory vegetation succession exhibited an important effect on the morphological quality of bamboo branches and leaves, efficiency of branching and spreading, and relationship between anisotropic growth and branch and leaf biomass in moso bamboo forests. Notably, leaves tended to be smaller and branches slenderer. Furthermore, successional age and age of standing bamboo had obvious effects, mainly on the leaves of the main branches, with 1st-degree bamboo being more sensitive than 2nd-degree bamboo. Hence, during the succession process, bamboo invests more resources in branch growth to enhance competition for spatial resources.
-
-
图 1 毛竹林叶干重与枝干重异速生长关系
A:1度竹主枝;B:1度竹侧枝;C:2度竹主枝;D:2度竹侧枝。
Figure 1. Relationship between total leaf mass and stem mass of experimental Phyllostachys edulis stands
A: Main branches of 1st-degree bamboo; B: Lateral branches of 1st-degree bamboo; C: Main branches of 2nd-degree bamboo; D: Lateral branches of 2nd-degree bamboo.
表 1 实验毛竹林基本情况
Table 1 Basic information on experimental Phyllostachys edulis stands
演替年限
Succession
period / a海拔
Altitude / m坡向
Slope
aspect坡位
Slope
position毛竹
P. edulis乔灌木
Arbor and shrubs郁闭度
Canopy
density立竹密度
Bamboo
density /
ind/hm2立竹胸径
Bamboo diameter
at breast height / cm密度
Density /
ind/hm2树高
Tree height / m地径
Basal
diameter / cm0 500 ± 10 36 ± 2.50 西 2 625 ± 25 9.40 ± 0.60 - - - 0.60 9 520 ± 10 36 ± 2.50 西 3 150 ± 30 9.20 ± 0.40 8 000 ± 55 0.76 ± 0.08 0.76 ± 0.07 0.70 21 490 ± 10 36 ± 2.50 西 2 275 ± 20 8.90 ± 0.40 27 511 ± 147 2.42 ± 0.20 1.69 ± 0.11 0.85 表 2 毛竹林立竹叶片形态质量性状
Table 2 Leaf morphological characteristics of experimental Phyllostachys edulis stands
演替年限
Succession
period / a立竹年龄
Bamboo
age枝类
Branch
class叶长
Leaf
length / cm叶宽
Leaf
width / cm叶周长
Leaf
circumference / cm叶干重
Leaf dry
weight / g单叶面积
Leaf
area / cm2比叶面积
Specific leaf
area / cm2/g叶干物质含量
Leaf dry
matter content /
g/g21 1 主枝 9.63 ± 0.28B 1.44 ± 0.03B 22.02 ± 0.30B 33.94 ± 1.79A 10.31 ± 0.30B 195.53 ± 2.61A 0.12 ± 0.00A 9 9.88 ± 0.45B 1.45 ± 0.03B 22.27 ± 0.91B 34.23 ± 1.08A 10.60 ± 0.67B 174.21 ± 1.73B 0.14 ± 0.01A 0 10.67 ± 0.31A 1.52 ± 0.03A 24.18 ± 0.48A 30.51 ± 0.07B 11.97 ± 0.34A 200.31 ± 5.13A 0.13 ± 0.01A 21 侧枝 9.94 ± 0.21A 1.46 ± 0.03A 22.65 ± 0.45A 16.93 ± 0.68A 10.81 ± 0.24A 200.03 ± 11.11A 0.12 ± 0.00A 9 10.03 ± 0.26A 1.47 ± 0.03A 22.54 ± 0.69A 18.55 ± 0.16A 10.78 ± 0.39A 169.83 ± 5.15B 0.13 ± 0.01A 0 10.20 ± 0.20A 1.47 ± 0.04A 23.18 ± 0.39A 19.52 ± 2.66A 11.20 ± 0.40A 206.76 ± 8.14A 0.12 ± 0.01A 21 2 主枝 10.66 ± 0.08A 1.54 ± 0.03A 24.26 ± 0.15A 24.37 ± 1.94A 12.34 ± 0.09A 190.20 ± 0.13A 0.15 ± 0.01A 9 9.96 ± 0.12B 1.43 ± 0.04B 22.31 ± 0.02B 19.09 ± 0.74B 10.66 ± 0.23B 182.36 ± 1.95A 0.13 ± 0.01B 0 10.79 ± 0.17A 1.56 ± 0.06A 24.24 ± 0.38 A 27.18 ± 2.00A 12.15 ± 0.19A 191.78 ± 16.56A 0.13 ± 0.00A 21 侧枝 10.56 ± 0.13A 1.49 ± 0.02A 23.41 ± 0.51AB 16.18 ± 1.40B 11.71 ± 0.19A 188.60 ± 0.13A 0.14 ± 0.00A 9 10.02 ± 0.27B 1.47 ± 0.00A 22.58 ± 0.56B 11.02 ± 0.51C 10.98 ± 0.41A 184.19 ± 4.80A 0.15 ± 0.03A 0 10.71 ± 0.20A 1.48 ± 0.02A 24.20 ± 0.53A 19.08 ± 0.89A 11.67 ± 0.48A 190.47 ± 4.64A 0.14 ± 0.00A 注:不同大写字母表示不同林下植被演替年限毛竹林同一年龄立竹主枝或侧枝叶片间差异显著。下同。 Note: Different capital letters indicate different vegetation succession years, with significant differences between the leaves of main and side branches of P. edulis stands of the same age. Same below. 表 3 毛竹林立竹枝形态质量性状
Table 3 Branch morphological characteristics of experimental Phyllostachys edulis stands
演替年限
Succession
period / a立竹年龄
Bamboo
age枝类
Branch
class枝长
Branch
length / cm枝基径
Branch base
diameter / mm枝干重
Branch
weight / g枝纤细率
Branch fineness
rate / cm/mm枝干物质含量
Branch dry matter
content / g/g21 1 主枝 159.78 ± 10.10A 9.09 ± 0.05A 75.00 ± 1.96A 176.12 ± 6.24A 0.64 ± 0.02A 9 157.22 ± 2.98A 9.18 ± 0.18A 60.20 ± 3.35B 176.05 ± 11.18A 0.64 ± 0.01A 0 143.25 ± 3.47B 8.82 ± 0.27A 55.31 ± 2.25B 163.74 ± 1.19B 0.62 ± 0.02A 21 侧枝 132.67 ± 5.39A 7.12 ± 0.23A 36.82 ± 4.36A 187.16 ± 2.95A 0.64 ± 0.02B 9 128.94 ± 1.59A 6.94 ± 0.07A 36.56 ± 0.52A 189.03 ± 10.30A 0.69 ± 0.05A 0 123.48 ± 6.46B 7.16 ± 0.47A 37.70 ± 3.81A 178.30 ± 6.70B 0.63 ± 0.01B 21 2 主枝 155.42 ± 6.61A 8.23 ± 0.14A 57.75 ± 8.71A 189.53 ± 7.49A 0.61 ± 0.02A 9 137.39 ± 1.42B 7.70 ± 0.14B 43.20 ± 3.95B 180.42 ± 0.70A 0.66 ± 0.01A 0 139.22 ± 1.13B 7.75 ± 0.07B 46.49 ± 3.31B 178.86 ± 5.05B 0.64 ± 0.01A 21 侧枝 137.50 ± 6.50A 6.74 ± 0.19A 32.52 ± 3.55A 203.41 ± 1.92A 0.64 ± 0.01A 9 124.11 ± 2.96B 6.03 ± 0.07B 23.63 ± 0.55B 204.49 ± 4.77A 0.66 ± 0.01A 0 121.31 ± 10.73B 6.59 ± 0.58A 29.60 ± 3.56A 183.98 ± 4.02B 0.64 ± 0.03A 表 4 毛竹林抽枝展叶效率
Table 4 Branch and leaf characters of experimental Phyllostachys edulis stands
演替年限
Succession
period / a立竹年龄
Bamboo
age枝类
Branch
class出叶强度
Intensity of
leaf / ind/g叶面积比
Leaf area
ratio / mm2/g叶密度
Leaf density /
ind/mm叶枝质量比
Leaf /stem mass
ratio / g/g胡波尔值
Huber value /
mm2/mm21 1 主枝 6.35 ± 0.24A 100.12 ± 5.72B 4.34 ± 0.54A 0.53 ± 0.03B 0.00008 ± 0B 9 5.65 ± 0.56B 93.27 ± 14.77B 3.59 ± 0.76B 0.55 ± 0.08AB 0.00012 ± 0A 0 6.12 ± 0.43AB 117.82 ± 29.07A 3.87 ± 0.70AB 0.61 ± 0.07A 0.00009 ± 0AB 21 侧枝 6.04 ± 0.44B 99.34 ± 10.89B 2.58 ± 0.34A 0.52 ± 0.06B 0.00011 ± 0B 9 5.17 ± 0.28C 84.42 ± 6.93C 2.24 ± 0.30A 0.51 ± 0.04B 0.00012 ± 0A 0 6.68 ± 0.84A 121.27 ± 23.79A 2.73 ± 1.07A 0.61 ± 0.12A 0.00011 ± 0A 21 2 主枝 4.66 ± 0.34C 83.18 ± 8.66B 2.25 ± 0.32B 0.44 ± 0.05B 0.00012 ± 0A 9 5.30 ± 0.44B 84.18 ± 10.19B 2.54 ± 0.53B 0.49 ± 0.06B 0.00013 ± 0A 0 6.16 ± 0.47A 123.26 ± 15.38A 3.49 ± 0.76A 0.64 ± 0.08A 0.00009 ± 0B 21 侧枝 4.97 ± 0.30B 85.52 ± 7.59B 1.68 ± 0.49B 0.47 ± 0.04B 0.00013 ± 0A 9 4.94 ± 0.58B 82.79 ± 14.92 B 1.51 ± 0.27B 0.52 ± 0.09B 0.00014 ± 0A 0 6.72 ± 0.45A 136.35 ± 15.92A 2.67 ± 0.90A 0.73 ± 0.09A 0.00009 ± 0B 表 5 毛竹林枝-叶质量的SMA分析
Table 5 SMA analysis of branch leaf size of experimental Phyllostachys edulis stands
指标
Indicators演替年限
Succession
period / a立竹年龄
Bamboo
age枝类
Branch
class数量
Number斜率
Slope95%置信区间
95% CI截距
InterceptR2 P 叶干重-
枝干重21 1 主枝 30 1.02(1.14) 0.71,1.45 −0.32 0.25 < 0.010 9 30 1.26(1.14) 0.92,1.72 −0.74 0.48 < 0.001 0 30 1.15(1.14) 0.87,1.51 −0.51 0.42 < 0.001 21 侧枝 30 1.14(1.02) 0.85,1.51 −0.55 0.51 < 0.001 9 30 1.66 1.18,2.32 −1.34 0.23 < 0.050 0 30 0.94(1.02) 0.74,1.20 −0.19 0.61 < 0.001 21 2 主枝 30 1.28(0.99) 0.91,1.81 −0.87 0.36 < 0.050 9 30 1.62 1.23,2.15 −1.39 0.46 < 0.001 0 30 0.97(0.99) 0.86,1.09 −0.19 0.89 < 0.001 21 侧枝 30 1.16(1.13) 0.86,1.58 −0.58 0.42 < 0.001 9 30 1.83 1.43,2.35 −1.53 0.70 < 0.001 0 30 1.09(1.13) 0.82,1.45 −0.31 0.47 < 0.001 -
[1] 王飞,郭树江,纪永福,张莹花,韩福贵,等. 不同演替阶段白刺灌丛沙堆土壤因子与叶功能性状关系研究[J]. 干旱区地理,2022,45(1):176−184. Wang F,Guo SJ,Ji YF,Zhang YH,Han FG,et al. Relationship between soil factors and leaf functional traits of Nitraria tangutorum shrub at different succession stages[J]. Arid Land Geography,2022,45 (1):176−184.
[2] Cornelissen JHC,Lavorel S,Garnier E,Díaz S,Buchmann N,et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide[J]. Aust J Bot,2003,51 (4):335−380. doi: 10.1071/BT02124
[3] 李俊慧,彭国全,杨冬梅. 常绿和落叶阔叶物种当年生小枝茎长度和茎纤细率对展叶效率的影响[J]. 植物生态学报,2017,41(6):650−660. doi: 10.17521/cjpe.2016.0376 Li JH,Peng GQ,Yang DM. Effect of stem length to stem slender ratio of current-year twigs on the leaf display efficiency in evergreen and deciduous broadleaved trees[J]. Chinese Journal of Plant Ecology,2017,41 (6):650−660. doi: 10.17521/cjpe.2016.0376
[4] Westoby M,Wright IJ. Land-plant ecology on the basis of functional traits[J]. Trends Ecol Evol,2006,21 (5):261−268. doi: 10.1016/j.tree.2006.02.004
[5] 孙小妹,何明珠,周彬,李金霞,陈年来. 霸王根茎叶非结构性碳与C∶N∶P计量特征对干旱的响应[J]. 干旱区地理,2021,44(1):240−249. Sun XM,He MZ,Zhou B,Li JX,Chen NL. Non-structural carbohydrates and C∶N∶P stoichiometry of roots,stems,and leaves of Zygophyllum xanthoxylon in responses to xeric condition[J]. Arid Land Geography,2021,44 (1):240−249.
[6] 吴伟光,曹先磊. 毛竹林经营投入产出关系与经营效益分析[J]. 南京林业大学学报(自然科学版),2016,40(3):108−114. Wu WG,Cao XL. Study on the relationship between input,output and economic benefit of moso bamboo plantation[J]. Journal of Nanjing Forestry University (Natural Sciences Edition)
,2016,40 (3):108−114. [7] 姚钧能,吕建华,俞卫良,张君波,雷赵枫,等. 氮沉降和经营强度对毛竹林凋落叶生态化学计量特征的影响[J]. 应用生态学报,2018,29(2):467−473. Yao JN,Lü JH,Yu WL,Zhang JB,Lei ZF,et al. Effects of nitrogen deposition and management intensity on stoichiometry of leaf litter in Moso bamboo forest[J]. Chinese Journal of Applied Ecology,2018,29 (2):467−473.
[8] 冯鹏飞,李玉敏. 2021年中国竹资源报告[J]. 世界竹藤通讯,2023,21(2):100−103. [9] Busse MD,Cochran PH,Barrett JW. Changes in ponderosa pine site productivity following removal of understory vegetation[J]. Soil Sci Soc Am J,1996,60 (6):1614−1621. doi: 10.2136/sssaj1996.03615995006000060004x
[10] Hébert F,Thiffault N,Ruel JC,Munson AD. Ericaceous shrubs affect black spruce physiology independently from inherent site fertility[J]. Forest Ecol Manag,2010,260 (2):219−228. doi: 10.1016/j.foreco.2010.04.026
[11] Warton DI,Wright IJ,Falster DS,Westoby M. Bivariate line-fitting methods for allometry[J]. Biol Rev,2006,81 (2):259−291. doi: 10.1017/S1464793106007007
[12] Warton DI,Duursma RA,Falster DS,Taskinen S. SMART 3-an R package for estimation and inference about allometric lines[J]. Methods Ecol Evol,2012,3 (2):257−259. doi: 10.1111/j.2041-210X.2011.00153.x
[13] Warton DI,Weber NC. Common slope tests for bivariate errors-in-variables models[J]. Biometr J,2002,44 (2):161−174. doi: 10.1002/1521-4036(200203)44:2<161::AID-BIMJ161>3.0.CO;2-N
[14] 杨巧,朱润军,杨畅宇,李仕杰,程希平. 基于树形结构的木棉叶功能性状差异性研究[J]. 生态学报,2022,42(7):2834−2842. Yang Q,Zhu RJ,Yang CY,Li SJ,Cheng XP. Variation in leaf functional traits of Bombax ceiba Linnaeus communities based on tree structure[J]. Acta Ecologica Sinica,2022,42 (7):2834−2842.
[15] 曹永慧,周本智,葛晓改,倪霞,王小明. 毛竹比叶质量时空变化及对截雨干旱的响应[J]. 林业科学研究,2019,32(6):31−39. Cao YH,Zhou BZ,Ge XG,Ni X,Wang XM. Seasonal and canopy variation of leaf mass per area for Phyllostachys edulis leaves and its response to drought stress[J]. Forest Research,2019,32 (6):31−39.
[16] 邱东,吴甘霖,刘玲,涂文琴,陶冶. 城市香樟叶片干物质含量及比叶面积的时空变异[J]. 云南大学学报(自然科学版),2019,41(3):609−618. Qiu D,Wu GL,Liu L,Tu WQ,Tao Y. Spatial-temporal variation of leaf dry matter content and specific leaf area of Cinnamomum camphora in urban area[J]. Journal of Yunnan University (Natural Sciences Edition)
,2019,41 (3):609−618. [17] 戚德辉,温仲明,杨士梭,王红霞,郭茹. 基于功能性状的铁杆蒿对环境变化的响应与适应[J]. 应用生态学报,2015,26(7):1921−1927. Qi DH,Wen ZM,Yang SS,Wang HX,Guo R. Trait-based responses and adaptation of Artemisia sacrorum to environmental changes[J]. Chinese Journal of Applied Ecology,2015,26 (7):1921−1927.
[18] 刘希珍,封焕英,蔡春菊,范少辉,刘广路. 毛竹向阔叶林扩展过程中的叶功能性状研究[J]. 北京林业大学学报,2015,37(8):8−17. Liu XZ,Feng HY,Cai CJ,Fan SH,Liu GL. Response of leaf functional traits of Moso bamboo during the invading process into the broad-leaved forest[J]. Journal of Beijing Forestry University,2015,37 (8):8−17.
[19] 张运春,杜晓军,张桥英,高贤明,苏智先. 克隆乔木黄牛奶树枝条的功能特征[J]. 植物生态学报,2005,29(5):799−806. Zhang YC,Du XJ,Zhang QY,Gao XM,Su ZX. Functions of branches of the clonal tree Symplocos laurina[J]. Acta Phytoecologica Sinica,2005,29 (5):799−806.
[20] Day ME,Greenwood MS,Diaz-Sala C. Age- and size-related trends in woody plant shoot development:regulatory pathways and evidence for genetic control[J]. Tree Physiol,2002,22 (8):507−513. doi: 10.1093/treephys/22.8.507
[21] Thomas SC,Winner WE. Photosynthetic differences between saplings and adult trees:an integration of field results by meta-analysis[J]. Tree Physiol,2002,22 (2-3):117−127. doi: 10.1093/treephys/22.2-3.117
[22] 韩威,刘超,樊艳文,赵娜,叶思阳,等. 长白山阔叶木本植物叶片形态性状沿海拔梯度的响应特征[J]. 北京林业大学学报,2014,36(4):47−53. Han W,Liu C,Fan YW,Zhao N,Ye SY,et al. Responses of leaf morphological traits for broadleaved woody plants along the altitudinal gradient of Changbai Mountain,northeastern China[J]. Journal of Beijing Forestry University,2014,36 (4):47−53.
[23] 毛伟,李玉霖,张铜会,赵学勇,黄迎新,宋琳琳. 不同尺度生态学中植物叶性状研究概述[J]. 中国沙漠,2012,32(1):33−41. Mao W,Li YL,Zhang TH,Zhao XY,Huang YX,Song LL. Research advances of plant leaf traits at different ecology scales[J]. Journal of Desert Research,2012,32 (1):33−41.
[24] Long WX,Zang RG,Schamp BS,Ding Y. Within- and among-species variation in specific leaf area drive community assembly in a tropical cloud forest[J]. Oecologia,2011,167 (4):1103−1113. doi: 10.1007/s00442-011-2050-9
[25] Lohier T,Jabot F,Meziane D,Shipley B,Reich PB,Deffuant G. Explaining ontogenetic shifts in root-shoot scaling with transient dynamics[J]. Ann Bot,2014,114 (3):513−524. doi: 10.1093/aob/mcu128
[26] Moles AT,Westoby M. Do small leaves expand faster than large leaves,and do shorter expansion times reduce herbivore damage?[J]. Oikos,2000,90 (3):517−524. doi: 10.1034/j.1600-0706.2000.900310.x
[27] 朱旭斌,刘娅梅,孙书存. 南京地区落叶栎林主要木本植物的展叶动态研究[J]. 植物生态学报,2005,29(1):128−136. Zhu XB,Liu YM,Sun SC. Leaf expansion of the dominant woody species of three deciduous oak forests in Nanjing,east China[J]. Acta Phytoecologica Sinica,2005,29 (1):128−136.
[28] 宋利霞,陶建平,冉春燕,余小红,王永健,李媛. 卧龙亚高山暗针叶林不同林冠环境下华西箭竹的克隆生长[J]. 植物生态学报,2007,31(4):637−644. doi: 10.17521/cjpe.2007.0082 Song LX,Tao JP,Ran CY,Yu XH,Wang YJ,Li Y. Clonal growth of Fargesia nitida under different canopy conditions in a subalpine dark coniferous forest in Wolong nature reserve,China[J]. Journal of Plant Ecology ,2007,31 (4):637−644. doi: 10.17521/cjpe.2007.0082
[29] 莫丹,王振孟,左有璐,向双. 亚热带常绿阔叶林木本植物幼树阶段抽枝展叶的权衡关系[J]. 植物生态学报,2020,44(10):995−1006. doi: 10.17521/cjpe.2020.0143 Mo D,Wang ZM,Zuo YL,Xiang S. Trade-off between shooting and leaf developing of woody species saplings in subtropical evergreen broad-leaved forests[J]. Chinese Journal of Plant Ecology,2020,44 (10):995−1006. doi: 10.17521/cjpe.2020.0143
[30] Wang JW,Yu D,Wang Q. Growth,biomass allocation,and autofragmentation responses to root and shoot competition in Myriophyllum spicatum as a function of sediment nutrient supply[J]. Aquat Bot,2008,89 (4):357−364. doi: 10.1016/j.aquabot.2008.04.001
[31] Yu FH,Chen YF,Dong M. Clonal integration enhances survival and performance of Potentilla anserina,suffering from partial sand burial on Ordos plateau,China[J]. Evol Ecol,2001,15 (4-6):303−318. doi: 10.1023/A:1016032831038
[32] 朱强根,金爱武,王意锟,邱永华,李雪涛,张四海. 不同营林模式下毛竹枝叶的生物量分配:异速生长分析[J]. 植物生态学报,2013,37(9):811−819. Zhu QG,Jin AW,Wang YK,Qiu YH,Li XT,Zhang SH. Biomass allocation of branches and leaves in Phyllostachys heterocycla ‘Pubescens’ under different management modes:allometric scaling analysis[J]. Chinese Journal of Plant Ecology,2013,37 (9):811−819.
[33] 郭子武,杨清平,李迎春,陈双林. 密度对四季竹地上生物量分配格局及异速增长模式的制约性调节[J]. 生态学杂志,2013,32(3):515−521. Guo ZW,Yang QP,Li YC,Chen SL. Restrictive regulation of stand density on aboveground biomass allocation and allometric pattern of Oligostachyum lubricum[J]. Chinese Journal of Ecology,2013,32 (3):515−521.
[34] 施建敏,叶学华,陈伏生,杨清培,黎祖尧,等. 竹类植物对异质生境的适应——表型可塑性[J]. 生态学报,2014,34(20):5687−5695. Shi JM,Ye XH,Chen FS,Yang QP,Li ZY,et al. Adaptation of bamboo to heterogeneous habitat:phenotypic plasticity[J]. Acta Ecologica Sinica,2014,34 (20):5687−5695.
-
期刊类型引用(0)
其他类型引用(2)