高级检索+

‘白花建’莲酵母双杂文库构建及NnWRKY40互作蛋白筛选

陈思梦, 王锦鑫, 党明静, 王政道, 李静

陈思梦,王锦鑫,党明静,王政道,李静. ‘白花建’莲酵母双杂文库构建及NnWRKY40互作蛋白筛选[J]. 植物科学学报,2023,41(4):447−457. DOI: 10.11913/PSJ.2095-0837.22239
引用本文: 陈思梦,王锦鑫,党明静,王政道,李静. ‘白花建’莲酵母双杂文库构建及NnWRKY40互作蛋白筛选[J]. 植物科学学报,2023,41(4):447−457. DOI: 10.11913/PSJ.2095-0837.22239
Chen SM,Wang JX,Dang MJ,Wang ZD,Li J. Construction of two-hybrid library of yeast and screening of NnWRKY40 interacting proteins in Nelumbo nucifera Gaertn. ‘Baihuajian’[J]. Plant Science Journal,2023,41(4):447−457. DOI: 10.11913/PSJ.2095-0837.22239
Citation: Chen SM,Wang JX,Dang MJ,Wang ZD,Li J. Construction of two-hybrid library of yeast and screening of NnWRKY40 interacting proteins in Nelumbo nucifera Gaertn. ‘Baihuajian’[J]. Plant Science Journal,2023,41(4):447−457. DOI: 10.11913/PSJ.2095-0837.22239
陈思梦,王锦鑫,党明静,王政道,李静. ‘白花建’莲酵母双杂文库构建及NnWRKY40互作蛋白筛选[J]. 植物科学学报,2023,41(4):447−457. CSTR: 32231.14.PSJ.2095-0837.22239
引用本文: 陈思梦,王锦鑫,党明静,王政道,李静. ‘白花建’莲酵母双杂文库构建及NnWRKY40互作蛋白筛选[J]. 植物科学学报,2023,41(4):447−457. CSTR: 32231.14.PSJ.2095-0837.22239
Chen SM,Wang JX,Dang MJ,Wang ZD,Li J. Construction of two-hybrid library of yeast and screening of NnWRKY40 interacting proteins in Nelumbo nucifera Gaertn. ‘Baihuajian’[J]. Plant Science Journal,2023,41(4):447−457. CSTR: 32231.14.PSJ.2095-0837.22239
Citation: Chen SM,Wang JX,Dang MJ,Wang ZD,Li J. Construction of two-hybrid library of yeast and screening of NnWRKY40 interacting proteins in Nelumbo nucifera Gaertn. ‘Baihuajian’[J]. Plant Science Journal,2023,41(4):447−457. CSTR: 32231.14.PSJ.2095-0837.22239

‘白花建’莲酵母双杂文库构建及NnWRKY40互作蛋白筛选

基金项目: 国家自然科学基金项目(31700262);山东省自然科学基金项目(ZR2021MC163)。
详细信息
    作者简介:

    陈思梦(1997-),女,硕士研究生,研究方向为莲分子生物学(E-mail:csm1049@whut.edu.cn

    王锦鑫(2001-),女,本科生,研究方向为莲分子生物学(E-mail:morgane_w@163.com

    通讯作者:

    李静: E-mail:celery_wh@126.com

    共同第一作者

  • 中图分类号: Q943.2

Construction of two-hybrid library of yeast and screening of NnWRKY40 interacting proteins in Nelumbo nucifera Gaertn. ‘Baihuajian’

Funds: This work was supported by grants from the National Natural Science Foundation of China (31700262) and Natural Science Foundation of Shandong Province (ZR2021MC163).
  • 摘要:

    通过构建莲(Nelumbo nucifera Gaertn.)品种 ‘白花建’不同组织的混合cDNA文库,筛选与莲转录因子NnWRKY40互作的蛋白,探究NnWRKY40参与调控次级代谢物生物碱合成的可能机制。结果显示,混合cDNA文库的库容为1.2 × 107 CFU,重组率为100%,插入片段平均长度大于1000 bp。NnWRKY40包含两个同源基因NnWRKY40aNnWRKY40b,利用NnWRKY40b构建诱饵载体pGBKT7-NnWRKY40b,通过共转化方法,从文库中筛选到27个与NnWRKY40b 互作的蛋白。这些互作蛋白可分为生长发育及抗逆、激素调控和次级代谢、未知蛋白3类。选取6个代表性互作蛋白(NnUBC、NnPEBP、NnPPOA、NnCHS、NnJAZ1和Unknown protein 3)进行一对一验证,发现其中JAZ蛋白与次生代谢物生物碱合成相关,提示NnWRKY40b转录因子可能与茉莉酸(JA)介导的生物碱合成调控密切相关。

    Abstract:

    To explore the potential mechanism of the NnWRKY40 transcription factor in lotus (Nelumbo nucifera Gaertn.) for regulating the synthesis of secondary metabolite alkaloids, a mixed cDNA library from different lotus tissues was constructed, and the proteins interacting with NnWRKY40 were screened. Total RNA of different tissues was extracted from ‘Baihuajian’, and a mixed cDNA library was established. The library capacity was 1.2 × 107 CFU, recombinant rate was 100%, and average length of the inserted fragments was >1 000 bp. NnWRKY40 contains two homologous genes, NnWRKY40a and NnWRKY40b. As NnWRKY40b is reported to play a leading role in transcriptional activation of alkaloid synthesis genes, we used NnWRKY40b to construct the bait vector PGBKT7-NnWRKY40b. In total, 27 proteins interacting with NnWRKY40b were screened from the library using the co-transformation method. These interacting proteins could be divided into three categories: i.e., growth and development and stress response, hormone regulation and secondary metabolism, and unknown proteins. Six representative proteins, including NnUBC, NnPEBP, NnPPOA, NnCHS, NnJAZ1, and unknown protein 3, were selected for one-to-one verification, among which the JAZ protein was associated with alkaloid synthesis, suggesting that the NnWRKY40b transcription factor may be closely related to jasmonic acid (JA)-mediated regulation of alkaloid synthesis in N. nucifera.

  • 图  1   ‘白花建’莲6个不同组织样品总RNA质检(A)和mRNA分离结果(B)

    Figure  1.   Total RNA quality testing of six different tissue samples of 'Baihuajian' (A) and mRNA isolation (B)

    图  2   初级文库库容鉴定(A)和24个克隆中插入片段的PCR鉴定(B)

    Figure  2.   Identification of primary library capacity (A) and PCR identification of inserts (B)

    图  3   次级文库库容鉴定(A)和24个克隆中插入片段的PCR鉴定(B)

    Figure  3.   Identification of secondary library capacity (A) and PCR identification of inserts (B)

    图  4   pGBKT7-NnWRKY40b 诱饵蛋白自激活检测

    Figure  4.   Self-activation test of pGBKT7-NnWRKY40b bait protein

    图  5   TDO/X(A)和QDO/X(B)选择性培养基筛选的NnWRKY40b互作蛋白

    Figure  5.   NnWRKY40b interacting proteins screened by TDO/X (A) and QDO/X (B) selection medium

    图  6   NnWRKY40b和互作蛋白编码基因在激素JA(A)、SA(B)处理下的表达谱

    Figure  6.   Expression profiles of genes encoding NnWRKY40b and interacting proteins under JA (A) and SA (B) treatments

    图  7   NnWRKY40b和次级代谢相关蛋白(A)以及生长发育相关蛋白和未知功能蛋白的互作(B)

    Figure  7.   NnWRKY40b interactions with secondary metabolism-related proteins (A) and growth and development-related and unknown proteins (B)

    表  1   互作蛋白点对点验证所用引物

    Table  1   Primers used in one-to-one verification of interacting proteins

    引物名
    Primer name
    正向序列(5′–3′)
    Sequence of forward primer
    反向序列(5′–3′)
    Sequence of reverse primer
    pGBKT7-NnWRKY40bCATGGAGGCCGAATTCATGGAGTC
    GACTTGGTTGGATAC
    GCAGGTCGACGGATCCTCACCA
    TTTCTGCACTGTTGAATG
    pGADT7-NnJAZ1CAGATTACGCTCATATGATGTCAA
    GAGCGCCGGACCT
    TGCTTGGGTGGAATTCCTACTGT
    GGAGATCGAGCTTGT
    pGADT7-NnUBCCAGATTACGCTCATATGATGGCGA
    ACAGCAATCTACCC
    TGCTTGGGTGGAATTCTCAGGCA
    CCACTTGCATATAG
    pGADT7-NnCHSCAGATTACGCTCATATGATGGTGA
    CCGTGGAAGACATC
    TGCTTGGGTGGAATTCCTAGGCA
    GCGATACTGTGAAG
    pGADT7-NnPEBPCAGATTACGCTCATATGATGGCGA
    GTGACGAGTTTAGGT
    TGCTTGGGTGGAATTCTTAGGCT
    GGGAAAAGTCGGATC
    pGADT7-NnPPOACAGATTACGCTCATATGATGGCA
    TCGCTTTCTCCCTTGA
    TGCTTGGGTGGAATTCTCACGAA
    GCGAACACTATCTTG
    pGADT7-Unknown protein3CAGATTACGCTCATATGATGCAT
    TCCCTGAGCTTAAAACT
    TGCTTGGGTGGAATTCTTAGACG
    ATATCCGTATCATCTC
    下载: 导出CSV

    表  2   NnWRKY40b互作蛋白筛选及其功能预测

    Table  2   Screening and functional prediction of NnWRKY40b interacting proteins

    分类
    Classification
    蛋白号
    Protein ID
    基因号
    Gene ID
    蛋白名称
    Protein name
    相关蛋白功能预测
    Protein function prediction
    生长发育及
    抗逆
    XP_010271938.1LOC104607876枯草杆菌蛋白酶,NnSBT1.7种皮发育相关
    XP_010266914.1LOC104604316质体蓝素,NnPC2B参与光合作用
    XP_010279114.1LOC104613113泛素结合酶,NnUBC

    DNA修复,光周期,抗逆胁迫响应,降解生长素,延缓植物衰老,调控ABA信号途径
    YP_009093956.1LOC20834983ATP合成酶CF1亚基,NnatpE光合作用,细胞代谢
    XP_010265991.1LOC104603626类似谷胱甘肽S-转移酶U17, NnGST抗逆反应,植物修复
    XP_010269750.1LOC104606314铜转运蛋白5.1,NnCTR5.1
    光合作用,呼吸作用,细胞壁代谢,氧化应激反应
    XP_010255313.1LOC104596029非依赖性蛋白转位酶蛋白,NnTATB细胞内运输、分泌和囊泡转运
    XP_010248208.1LOC104591115二磷酸核酮糖羧化酶/加氧酶激活酶,NnRCA光合作用,叶片衰老,响应非生物胁迫
    XP_010270928.1LOC104607108半胱氨酸过氧化物氧还蛋白,NnPER1细胞氧化还原稳态,细胞氧化剂解毒
    XP_010269352.1LOC10460603460S核糖体蛋白L13e,NnRPL13翻译、核糖体结构与生物发生
    XP_010270872LOC104607076ADP-核糖基化因子,NnBLH8细胞内运输、分泌和囊泡转运
    XP_010275748.1LOC104610704核糖核酸酶,NnCAF 1RNA降解
    XP_010241640.1LOC104586181液泡蛋白分选相关蛋白,NnVPS37-1盐胁迫响应
    XP_010264580.1LOC104602549磷脂酰乙醇胺结合蛋白,NnPEBP植物生长发育,几种信号通路的调节,如MAP激酶通路
    XP_010251283.1LOC104593218类似Fcf2蛋白,NnFcf胚成熟,花瓣分化,叶片衰老
    XP_010263125.1LOC104601478ATP合成酶, NnatpH光合作用,细胞代谢
    XP_010244725.1LOC104588480类ACR12蛋白,NnACR12光合电子传递,冷响应,光响应
    激素调控和
    次级代谢
    XP_010258950.1LOC104598530泛素蛋白,NnUBQ蛋白降解,茉莉酸信号途径,细胞周期
    XP_010251469.1LOC104593386类似TIFY 10A蛋白,NnJAZ1
    抑制JA信号传导,响应盐胁迫,
    花的发育,茎叶的发育
    NP_001305084.1LOC104602160查尔酮合成酶,NnCHS
    类黄酮的生物合成,生长素运输的调节,根系向重力性的调节
    XP_010273014.1LOC104608661DAHP合成酶,NnDAHP分支酸合成
    ADC92563.1LOC104588895多酚氧化酶,NnPPOA类黄酮、木质素、原花青素生物合成过程
    XP_010270953.1LOC104607120S-腺苷甲硫氨酸合酶5,NnSAMS木质素生物合成过程,蛋氨酸代谢过程,冷反应
    未知XP_010261469.1LOC104600297未表征蛋白1未知
    XP_010260316.1LOC104599465未表征蛋白2未知
    XP_010248518.1LOC104591415未表征蛋白3未知
    XP_010276554.1LOC104611264未表征蛋白4未知
    下载: 导出CSV
  • [1] 陈强,张华,沙玫,刘永静. 一测多评法同时测定荷叶中4种生物碱含量[J]. 福建中医药,2020,51(6):29−32. doi: 10.3969/j.issn.1000-338X.2020.06.011

    Chen Q,Zhang H,Sha M,Liu YJ. Simultaneous determination of four alkaloids in nelumbinis folium by quantitative analysis of multi-components by single marker[J]. Fujian Journal of Traditional Chinese Medicine,2020,51 (6):29−32. doi: 10.3969/j.issn.1000-338X.2020.06.011

    [2]

    Wan Y,Xia J,Xu JF,Chen L,Yang Y,et al. Nuciferine,an active ingredient derived from lotus leaf,lights up the way for the potential treatment of obesity and obesity-related diseases[J]. Pharmacol Res,2022,175:106002. doi: 10.1016/j.phrs.2021.106002

    [3]

    Abdallah BM,Ali EM. Green synthesis of silver nanoparticles using the Lotus lalambensis aqueous leaf extract and their anti-candidal activity against oral candidiasis[J]. ACS Omega,2021,6 (12):8151−8162. doi: 10.1021/acsomega.0c06009

    [4]

    Tong YL,Li ZW,Wu YK,Zhu SL,Lu KK,He Z. Lotus leaf extract inhibits ER- breast cancer cell migration and metastasis[J]. Nutr Metab,2021,18 (1):20. doi: 10.1186/s12986-021-00549-0

    [5]

    Van der Fits L,Memelink J. ORCA3,a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism[J]. Science,2000,289 (5477):295−297. doi: 10.1126/science.289.5477.295

    [6]

    Kato N,Dubouzet E,Kokabu Y,Yoshida S,Taniguchi Y,et al. Identification of a WRKY protein as a transcriptional regulator of benzylisoquinoline alkaloid biosynthesis in Coptis japonica[J]. Plant Cell Physiol,2007,48 (1):8−18. doi: 10.1093/pcp/pcl041

    [7]

    Suttipanta N,Pattanaik S,Kulshrestha M,Patra B,Singh SK,Yuan L. The transcription factor CrWRKY1 positively regulates the terpenoid indole alkaloid biosynthesis in Catharanthus roseus[J]. Plant Physiol,2011,157 (4):2081−2093. doi: 10.1104/pp.111.181834

    [8]

    Agarwal P,Pathak S,Lakhwani D,Gupta P,Asif MH,Trivedi PK. Comparative analysis of transcription factor gene families from Papaver somniferum:identification of regulatory factors involved in benzylisoquinoline alkaloid biosynthesis[J]. Protoplasma,2016,253 (3):857−871. doi: 10.1007/s00709-015-0848-8

    [9]

    Zhou ML,Memelink J. Jasmonate-responsive transcription factors regulating plant secondary metabolism[J]. Biotechnol Adv,2016,34 (4):441−449. doi: 10.1016/j.biotechadv.2016.02.004

    [10]

    Tripathi S,Sangwan RS,Mishra B,Jadaun JS,Sangwan NS. Berry transcriptome:insights into a novel resource to understand development dependent secondary metabolism in Withania somnifera(Ashwagandha)[J]. Physiol Plant,2020,168 (1):148−173. doi: 10.1111/ppl.12943

    [11]

    Hao XL,Xie CH,Ruan QY,Zhang XC,Wu C,et al. The transcription factor OpWRKY2 positively regulates the biosynthesis of the anticancer drug camptothecin in Ophiorrhiza pumila[J]. Hortic Res,2021,8 (1):7. doi: 10.1038/s41438-020-00437-3

    [12]

    Eulgem T,Rushton PJ,Robatzek S,Somssich IE. The WRKY superfamily of plant transcription factors[J]. Trends Plant Sci,2000,5 (5):199−206. doi: 10.1016/S1360-1385(00)01600-9

    [13]

    Ishiguro S,Nakamura K. Characterization of a cDNA encoding a novel DNA-binding protein,SPF1,that recognizes SP8 sequences in the 5′ upstream regions of genes coding for sporamin and β-amylase from sweet potato[J]. Mol Gen Genet,1994,244 (6):563−571. doi: 10.1007/BF00282746

    [14] 向小华,吴新儒,晁江涛,杨明磊,杨帆,等. 普通烟草WRKY基因家族的鉴定及表达分析[J]. 遗传,2016,38(9):840−856. doi: 10.16288/j.yczz.16-016

    Xiang XH,Wu XR,Chao JT,Yang ML,Yang F,et al. Genome-wide identification and expression analysis of the WRKY gene family in common tobacco (Nicotiana tabacum L. )[J]. Hereditas,2016,38 (9):840−856. doi: 10.16288/j.yczz.16-016

    [15]

    Cormack RS,Eulgem T,Rushton PJ,Köchner P,Hahlbrock K,Somssich IE. Leucine zipper-containing WRKY proteins widen the spectrum of immediate early elicitor-induced WRKY transcription factors in parsley[J]. BBA-Gene Struct Expr,2002,1576 (1-2):92−100. doi: 10.1016/S0167-4781(02)00298-1

    [16] 郑超,郑二松,王栩鸣,李冬月,杨勇,等. 水稻WRKY转录调控因子研究进展[J]. 生物技术通讯,2018,29(2):286−294. doi: 10.3969/j.issn.1009-0002.2018.02.026

    Zheng C,Zheng ES,Wang XM,Li DY,Yang Y,et al. Research progress on rice WRKY transcription factors[J]. Letters in Biotechnology,2018,29 (2):286−294. doi: 10.3969/j.issn.1009-0002.2018.02.026

    [17] 杨致荣,王兴春,薛金爱,孟令芝,李润植. 药用植物长春花WRKY转录因子的鉴定及表达谱分析[J]. 生物工程学报,2013,29(6):785−802. doi: 10.13345/j.cjb.2013.06.006

    Yang ZR,Wang XC,Xue JA,Meng LZ,Li RZ. Identification and expression analysis of WRKY transcription factors in medicinal plant Catharanthus roseus[J]. Chinese Journal of Biotechnology,2013,29 (6):785−802. doi: 10.13345/j.cjb.2013.06.006

    [18]

    Yamada Y,Nishida S,Shitan N,Sato F. Genome-wide profiling of WRKY genes involved in benzylisoquinoline alkaloid biosynthesis in California Poppy (Eschscholzia californica)[J]. Front Plant Sci,2021,2:699326.

    [19]

    Wei HW,Chen SY,Niyitanga S,Liu T,Qi JM,Zhang LW. Genome-wide identification and expression analysis response to GA3 stresses of WRKY gene family in seed hemp (Cannabis sativa L. )[J]. Gene,2022,822:146290. doi: 10.1016/j.gene.2022.146290

    [20]

    Mishra S,Triptahi V,Singh S,Phukan UJ,Gupta MM,et al. Wound induced tanscriptional regulation of benzylisoquinoline pathway and characterization of wound inducible PsWRKY transcription factor from Papaver somniferum[J]. PLoS One,2013,8 (1):e52784. doi: 10.1371/journal.pone.0052784

    [21]

    He J,Bouwmeester HJ,Dicke M,Kappers IF. Transcriptional and metabolite analysis reveal a shift in direct and indirect defences in response to spider-mite infestation in cucumber (Cucumis sativus)[J]. Plant Mol Biol,2020,103 (4-5):489−505. doi: 10.1007/s11103-020-01005-y

    [22] 代红洋,柏旭,李晓岗,张兴开,罗霖,等. 植物激素在三萜类化合物生物合成中的作用及调控机制研究进展[J]. 中草药,2021,52(20):6391−6402.

    Dai HY,Bai X,Li XG,Zhang XK,Luo L,et al. Research progress on roles of phytohormone in biosynthesis of triterpenoids and their regulatory mechanisms[J]. Chinese Traditional and Herbal Drugs,2021,52 (20):6391−6402.

    [23]

    Wasternack C,Song SS. Jasmonates:biosynthesis,metabolism,and signaling by proteins activating and repressing transcription[J]. J Exp Bot,2017,68 (6):1303−1321.

    [24]

    Yang J,Duan GH,Li CQ,Liu L,Han GY,et al. The crosstalks between jasmonic acid and other plant hormone signaling highlight the involvement of jasmonic acid as a core component in plant response to biotic and abiotic stresses[J]. Front Plant Sci,2019,10:1349. doi: 10.3389/fpls.2019.01349

    [25]

    Ming R,VanBuren R,Liu YL,Yang M,Han YP,et al. Genome of the long-living sacred lotus (Nelumbo nucifera Gaertn. )[J]. Genome Biol,2013,14 (5):R41. doi: 10.1186/gb-2013-14-5-r41

    [26]

    Zhang Y,Rahmani RS,Yang XY,Chen JM,Shi T. Integrative expression network analysis of microRNA and gene isoforms in sacred lotus[J]. BMC Genomics,2020,21 (1):429. doi: 10.1186/s12864-020-06853-y

    [27]

    Li J,Xiong YC,Li Y,Ye SQ,Yin Q,et al. Comprehensive analysis and functional studies of WRKY transcription factors in Nelumbo nucifera[J]. Int J Mol Sci,2019,20 (20):5006. doi: 10.3390/ijms20205006

    [28]

    Ferrer JL,Austin MB,Stewart C Jr,Noel JP. Structure and function of enzymes involved in the biosynthesis of phenylpropanoids[J]. Plant Physiol Biochem,2008,46 (3):356−370. doi: 10.1016/j.plaphy.2007.12.009

    [29]

    Ren GH,Wang BJ,Zhu XD,Mu Q,Wang C,et al. Cloning,expression,and characterization of miR058 and its target PPO during the development of grapevine berry stone[J]. Gene,2014,548 (2):166−173. doi: 10.1016/j.gene.2014.07.021

    [30] 王馨雨,杨绿竹,王婷,王蓉蓉,刘洁,等. 植物多酚氧化酶的生理功能、分离纯化及酶促褐变控制的研究进展[J]. 食品科学,2020,41(9):222−237. doi: 10.7506/spkx1002-6630-20190411-145

    Wang XY,Yang LZ,Wang T,Wang RR,Liu J,et al. Recent progress toward understanding the physiological function,purification,and enzymatic browning control of plant polyphenol oxidases[J]. Food Science,2020,41 (9):222−237. doi: 10.7506/spkx1002-6630-20190411-145

    [31] 田娇,刘园,房敏峰. 外源茉莉酸类激素对药用植物次生代谢的影响研究[J]. 天然产物研究与开发,2015,27(1):185−190. doi: 10.16333/j.1001-6880.2015.01.037

    Tian J,Liu Y,Fang MF. Review on the influence of exogenous jasmonates on medicinal plant secondary metabolism[J]. Natural Product Research and Development,2015,27 (1):185−190. doi: 10.16333/j.1001-6880.2015.01.037

    [32] 王金利,史胜青,贾利强,江泽平. 植物泛素结合酶E2功能研究进展[J]. 生物技术通报,2010(4):7−10. doi: 10.13560/j.cnki.biotech.bull.1985.2010.04.002

    Wang JL,Shi SQ,Jia LQ,Jiang ZP. Progress on functions of ubiquitin-conjugating enzyme (E2) in plants[J]. Biotechnology Bulletin,2010 (4):7−10. doi: 10.13560/j.cnki.biotech.bull.1985.2010.04.002

    [33] 李兴芬,苗雅慧,孙永江,张孟娟,张凌云. 青杄PwPEBP基因及其启动子序列的克隆与表达分析[J]. 北京林业大学学报,2019,41(4):8−20.

    Li XF,Miao YH,Sun YJ,Zhang MJ,Zhang LY. Cloning and expression analysis of PwPEBP gene and promoter sequence in Picea wilsonii[J]. Journal of Beijing Forestry University,2019,41 (4):8−20.

    [34] 王寻,高凝,张富军,韩月彭,王小非,等. 苹果磷脂酰乙醇胺结合蛋白PEBP家族基因的鉴定与比较分析[J]. 植物生理学报,2021,57(10):1996−2010. doi: 10.13592/j.cnki.ppj.2020.0395

    Wang X,Gao N,Zhang FJ,Han YP,Wang XF,et al. Identification and comparative analysis of phosphatidyl ethanolamine binding protein (PEBP) family gene in apple[J]. Plant Physiology Journal,2021,57 (10):1996−2010. doi: 10.13592/j.cnki.ppj.2020.0395

    [35] 祝一文,车永梅,赵方贵,朱丹,刘新. 碱胁迫下H2S参与活性氧代谢和水稻幼苗生长的调控[J]. 农业生物技术学报,2018,26(7):1124−1131.

    Zhu YW,Che YM,Zhao FG,Zhu D,Liu X. H2S functions in growth regulation in rice (Oryza sativa) seedling and metabolism modulating of reactive oxygen under alkaline stress[J]. Journal of Agricultural Biotechnology,2018,26 (7):1124−1131.

    [36] 张金梅,白雪,李玥莹,张颖. WRKY响应植物逆境的“角色”[J]. 安徽农业科学,2020,48(12):5−8. doi: 10.3969/j.issn.0517-6611.2020.12.002

    Zhang JM,Bai X,Li YY,Zhang Y. WRKY’s “Role” in response to plant adversity[J]. Journal of Anhui Agricultural Sciences,2020,48 (12):5−8. doi: 10.3969/j.issn.0517-6611.2020.12.002

    [37] 魏昕,刘雨恒,刘宇阳,殷晓浦,谢恬,等. 植物JAZ蛋白家族研究进展[J]. 植物生理学报,2021,57(5):1039−1046. doi: 10.13592/j.cnki.ppj.2020.0532

    Wei X,Liu YH,Liu YY,Yin XP,Xie T,et al. Advances of JAZ family in plants[J]. Plant Physiology Journal,2021,57 (5):1039−1046. doi: 10.13592/j.cnki.ppj.2020.0532

    [38]

    Chini A,Fonseca S,Fernández G,Adie B,Chico JM,et al. The JAZ family of repressors is the missing link in jasmonate signalling[J]. Nature,2007,448 (7154):666−671. doi: 10.1038/nature06006

    [39]

    Thines B,Katsir L,Melotto M,Niu YJ,Mandaokar A,et al. JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling[J]. Nature,2007,448 (7154):661−665. doi: 10.1038/nature05960

    [40]

    Chen XZ,Li JR,Liu YT,Wu DD,Huang HL,et al. PatSWC4,a methyl jasmonate-responsive MYB (v-myb avian myeloblastosis viral oncogene homolog)-related transcription factor,positively regulates patchoulol biosynthesis in Pogostemon cablin[J]. Ind Crops Prod,2020,154:112672. doi: 10.1016/j.indcrop.2020.112672

  • 期刊类型引用(1)

    1. 惠生娟,葛丽萍,王子瑜,张玉胜,苏云婷,孙岩,李润植. 续随子MYB基因家族的鉴定及ElMYB114在油脂合成中的功能分析. 植物科学学报. 2025(01): 92-101 . 本站查看

    其他类型引用(0)

图(7)  /  表(2)
计量
  • 文章访问数:  250
  • HTML全文浏览量:  16
  • PDF下载量:  49
  • 被引次数: 1
出版历程
  • 收稿日期:  2022-08-31
  • 修回日期:  2022-09-25
  • 网络出版日期:  2023-01-06
  • 刊出日期:  2023-08-30

目录

    /

    返回文章
    返回