Effects of soil nitrogen addition on photosynthetic limitations in Fraxinus mandshurica Rupr. and Quercus mongolica Fish. ex Ledeb
-
摘要:
本文以试验地常年大气氮(N)沉降量(23 kg·ha−1·year−1)为依据,设计了低度(LN,23 kg·ha−1·year−1)、中度(MN,46 kg·ha−1·year−1)和高度(HN,69 kg·ha−1·year−1)3种氮添加水平以模拟大气氮沉降,以无氮添加处理为对照(CK),探究过度氮沉降对森林阔叶树种水曲柳(Fraxinus mandshurica Rupr.)和蒙古栎(Quercus mongolica Fish. ex Ledeb)的生理生态效应。结果显示:(1)两树种CO2扩散性限制作用(即气孔限制lsc和叶肉限制lm)在氮添加后减弱,而后随氮量的增加先减弱后增强;其生化限制lb则在氮添加后增强,后随氮量增加先增强后减弱;(2)3种光合限制作用均在MN下达到最值, 中度土壤氮添加量对植株光合的促进效应最高;(3)土壤氮添加期间植株光合能力的增强主要源于CO2扩散性限制作用的减弱,而gsc变化(即lsc)为扩散性限制的主角作用因子;(4)3种光合限制作用(lsc、lm和lb)在不同生长期(7月和8月)均未表现出显著差异,表明lsc的光合主角限制“角色”无季节性差异;(5)一定范围内的土壤氮添加不会对植株的水分利用潜力产生显著影响。
Abstract:Based on natural nitrogen deposition in the field (23 kg·ha−1·year−1), this research employed low (LN, 23 kg·ha−1·year−1), moderate (MN, 46 kg·ha−1·year−1), and high (HN, 69 kg·ha−1·year−1) nitrogen levels to simulate natural nitrogen deposition, using no nitrogen addition used as a control (CK). The goal was to explore the physiological and ecological effects of excessive nitrogen deposition on two broad-leaved forest species, i.e., Manchurian ash (Fraxinus mandshurica Rupr.) and Mongolian oak (Quercus mongolica Fish. ex Ledeb). Results showed that 1) CO2 diffusional limitations (i.e., stomatal limitation, lsc, mesophyll limitation, lm) of both species decreased by more than 10% after nitrogen addition, then increased with increasing nitrogen supply, while biochemical limitation (lb) increased by more than 10% after nitrogen addition, then decreased with increasing nitrogen supply. 2) Both lsc and lm reached minimum values of 18.4% and 18.0% (Manchurian ash-August), 21.6% and 19.7% (Mongolian oak-July), and 21.6% and 20.1% (Mongolian oak-August), while lb reached a maximum value of 63.6% (Manchurian ash-August) and 59.7% and 58.3% (Mongolian oak-July and August) under MN treatment, indicating that soil nitrogen addition of 46 kg·ha-1·year-1 had the greatest photosynthesis-promoting effect. 3) The enhancement of plant photosynthetic capacity during soil nitrogen supply predominantly resulted from the weakening of CO2 diffusional limitations, in which stomatal conductance to CO2 (gsc, i.e., lsc) was the primary limiting factor affecting plant photosynthesis. 4) The three photosynthetic limitations (lsc, lm, and lb) did not show any significant differences between July and August, indicating that the primary photosynthetic role of lsc may lack seasonal variation. 5) Soil nitrogen addition within a certain content range did not significantly affect the water use potential of plants.
-
-
图 1 水曲柳(A、C)和蒙古栎(B、D)相对限制作用对土壤氮含量变化的响应
lsc为气孔限制,lm为叶肉限制,lb为生化限制。CK为对照(0 kg·ha−1·year−1),LN为低氮添加(23 kg·ha−1·year−1),MN为中氮添加(46 kg·ha−1·year−1),HN为高氮添加(69 kg·ha−1·year−1)。下同。
Figure 1. Reponses to relative limitations of soil nitrogen content in Fraxinus mandshurica (A, C) and Quercus mongolica (B, D) saplings
lsc, stomatal limitation; lm, mesophyll limitation; lb, biochemical limitation. CK, control (0 kg·ha−1·year−1); LN, low nitrogen addition (23 kg·ha−1·year−1); MN, medium nitrogen addition (46 kg·ha−1·year−1); HN, high nitrogen addition (69 kg·ha−1·year−1). Same below.
图 2 水曲柳(A、C)和蒙古栎(B、D)gsc、gm及生化能力对植株饱和光下碳同化相对贡献率随土壤氮含量的变化
SCL为gsc对叶片dPn/Pn的贡献值,MCL为gm对叶片dPn/Pn的贡献值,BL为生化能力对叶片dPn/Pn的贡献值。
Figure 2. Changes in contributions of gsc, gm, and biochemical capacity to light-saturated carbon assimilation (dPn/Pn) with soil nitrogen addition in Fraxinus mandshurica (A, C) and Quercus mongolica (B, D) saplings
SCL, contribution of gsc to dPn/Pn; MCL, contribution of gm to dPn/Pn; BL, contribution of biochemical capacity to dPn/Pn.
-
[1] Flexas J,Ribas-Carbó M,Diaz-Espejo A,Galmés J,Medrano H. Mesophyll conductance to CO2:current knowledge and future prospects[J]. Plant Cell Environ,2008,31 (5):602−621. doi: 10.1111/j.1365-3040.2007.01757.x
[2] Perez-Martin A,Michelazzo C,Torres-Ruiz JM,Flexas J,Fernández JE,et al. Regulation of photosynthesis and stomatal and mesophyll conductance under water stress and recovery in olive trees:correlation with gene expression of carbonic anhydrase and aquaporins[J]. J Exp Bot,2014,65 (12):3143−3156. doi: 10.1093/jxb/eru160
[3] Han JM,Lei ZY,Flexas J,Zhang YJ,Carriquí M,et al. Mesophyll conductance in cotton bracts:anatomically determined internal CO2 diffusion constraints on photosynthesis[J]. J Exp Bot,2018,69 (22):5433−5443.
[4] Zhu K,Yuan FH,Wang AZ,Yang H,Guan DX,et al. Effects of soil rewatering on mesophyll and stomatal conductance and the associated mechanisms involving leaf anatomy and some physiological activities in Manchurian ash and Mongolian oak in the Changbai Mountains[J]. Plant Physiol Biochem,2019,144:22−34. doi: 10.1016/j.plaphy.2019.09.025
[5] Liu ZJ,Dickmann DI. Effects of water and nitrogen interaction on net photosynthesis,stomatal conductance,and water use-efficiency in two hybrid poplar clones[J]. Physiol Plant,1996,97 (3):507−512. doi: 10.1111/j.1399-3054.1996.tb00510.x
[6] Yamori W,Nagai T,Makino A. The rate-limiting step for CO2 assimilation at different temperatures is influenced by the leaf nitrogen content in several C3 crop species[J]. Plant Cell Environ,2011,34 (5):764−777. doi: 10.1111/j.1365-3040.2011.02280.x
[7] Li Y,Ren BB,Yang XX,Xu GH,Shen QR,Guo SW. Chloroplast downsizing under nitrate nutrition restrained mesophyll conductance and photosynthesis in rice (Oryza sativa L. ) under drought conditions[J]. Plant Cell Physiol,2012,53 (5):892−900. doi: 10.1093/pcp/pcs032
[8] Xiong DL,Liu X,Liu LM,Douthe C,Li Y,et al. Rapid responses of mesophyll conductance to changes of CO2 concentration,temperature and irradiance are affected by N supplements in rice[J]. Plant Cell Environ,2015,38 (12):2541−2550. doi: 10.1111/pce.12558
[9] Eller F,Jensen K,Reisdorff C. Nighttime stomatal conductance differs with nutrient availability in two temperate floodplain tree species[J]. Tree Physiol,2017,37 (4):428−440.
[10] Zhu K,Wang AZ,Wu JB,Yuan FH,Guan DX,et al. Effects of nitrogen additions on mesophyll and stomatal conductance in Manchurian ash and Mongolian oak[J]. Sci Rep,2020,10:10038. doi: 10.1038/s41598-020-66886-x
[11] Galloway JN,Dentener FJ,Capone DG,Boyer EW,Howarth RW,et al. Nitrogen cycles:past,present,and future[J]. Biogeochemistry,2004,70 (2):153−226. doi: 10.1007/s10533-004-0370-0
[12] Zheng XH,Fu CB,Xu XK,Yan XD,Huang Y,et al. The Asian nitrogen cycle case study[J]. AMBIO,2002,31 (2):79−87. doi: 10.1579/0044-7447-31.2.79
[13] Loriaux SD,Avenson TJ,Welles JM,Mcdermitt DK,Eckles RD,et al. Closing in on maximum yield of chlorophyll fluorescence using a single multiphase flash of sub-saturating intensity[J]. Plant Cell Environ,2013,36 (10):1755−1770. doi: 10.1111/pce.12115
[14] Genty B,Briantais JM,Baker NR. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence[J]. Biochim Biophys Acta Gen Subj,1989,990 (1):87−92. doi: 10.1016/S0304-4165(89)80016-9
[15] Valentini R,Epron D,Angelis P,Matteucci G,Dreyer E. In situ estimation of net CO2 assimilation,photosynthetic electron flow and photorespiration in Turkey oak (Q. cerris L. ) leaves:diurnal cycles under different levels of water supply[J]. Plant Cell Environ,1995,18 (6):631−640. doi: 10.1111/j.1365-3040.1995.tb00564.x
[16] Harley PC,Loreto F,Di Marco G,Sharkey TD. Theoretical considerations when estimating the mesophyll conductance to CO2 flux by analysis of the response of photosynthesis to CO2[J]. Plant Physiol,1992,98 (4):1429−1436. doi: 10.1104/pp.98.4.1429
[17] Walker BJ,Skabelund DC,Busch FA,Ort DR. An improved approach for measuring the impact of multiple CO2 conductances on the apparent photorespiratory CO2 compensation point through slope-intercept regression[J]. Plant Cell Environ,2016,39 (6):1198−1203. doi: 10.1111/pce.12722
[18] Grassi G,Magnani F. Stomatal,mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees[J]. Plant Cell Environ,2005,28 (7):834−849. doi: 10.1111/j.1365-3040.2005.01333.x
[19] Wang XX,Du TT,Huang JL,Peng SB,Xiong DL. Leaf hydraulic vulnerability triggers the decline in stomatal and mesophyll conductance during drought in rice[J]. J Exp Bot,2018,69 (16):4033−4045. doi: 10.1093/jxb/ery188
[20] Flexas J,Barón M,Bota J,Ducruet JM,Gallé A,et al. Photosynthesis limitations during water stress acclimation and recovery in the drought-adapted Vitis hybrid Richter-110 (V. berlandieri × V. rupestris)[J]. J Exp Bot,2009,60 (8):2361−2377. doi: 10.1093/jxb/erp069
[21] Cano FJ,López R,Warren CR. Implications of the mesophyll conductance to CO2 for photosynthesis and water-use efficiency during long-term water stress and recovery in two contrasting Eucalyptus species[J]. Plant Cell Environ,2014,37 (11):2470−2490. doi: 10.1111/pce.12325
[22] Von Caemmerer S,Evans JR,Hudson GS,Andrews TJ. The kinetics of ribulose-1,5-bisphosphate carboxylase/oxygenase in vivo inferred from measurements of photosynthesis in leaves of transgenic tobacco[J]. Planta,1994,195:88−97. doi: 10.1007/BF00206296
[23] Osmond CB, Björkman O, Anderson DJ. Physiological Processes in Plant Ecology: Toward a Synthesis with Atriplex[M]. Berlin: Springer, 1980: 468.
[24] Bown HE,Watt MS,Mason EG,Clinton PW,Whitehead D. The influence of nitrogen and phosphorus supply and genotype on mesophyll conductance limitations to photosynthesis in Pinus radiata[J]. Tree Physiol,2009,29 (9):1143−1151. doi: 10.1093/treephys/tpp051
[25] Li Y,Gao YX,Xu XM,Shen QR,Guo SW. Light-saturated photosynthetic rate in high-nitrogen rice (Oryza sativa L. ) leaves is related to chloroplastic CO2 concentration[J]. J Exp Bot,2009,60 (8):2351−2360. doi: 10.1093/jxb/erp127
[26] Galmés J,Medrano H,Flexas J. Photosynthetic limitations in response to water stress and recovery in Mediterranean plants with different growth forms[J]. New Phytol,2007,175 (1):81−93. doi: 10.1111/j.1469-8137.2007.02087.x
[27] Wang XX,Wang WC,Huang JL,Peng SB,Xiong DL. Diffusional conductance to CO2 is the key limitation to photosynthesis in salt-stressed leaves of rice (Oryza sativa)[J]. Physiol Plantarum,2018,163 (1):45−58. doi: 10.1111/ppl.12653
[28] Zhu LL,Li HC,Thorpe MR,Hocart CH,Song X. Stomatal and mesophyll conductance are dominant limitations to photosynthesis in response to heat stress during severe drought in a temperate and a tropical tree species[J]. Trees,2021,35 (5):1613−1626. doi: 10.1007/s00468-021-02140-9
[29] 张继澍, 胡景江, 王玉国, 张少英, 宋纯鹏. 植物生理学[M]. 北京: 高等教育出版社, 2006: 112-120. [30] Perez-Martin A,Torres-Ruiz JM,Flexas J,Fernández JE,Diaz-Espejo A. Physiological and genetic response of olive leaves to water stress and recovery:implications of mesophyll conductance and genetic expression of aquaporins and carbonic anhydrase[J]. Acta Hortic,2011,922 (922):99−105.
[31] Zhu K,Yuan FH,Wang AZ,Wu JB,Guan DX,et al. Stomatal,mesophyll and biochemical limitations to soil drought and rewatering in relation to intrinsic water-use efficiency in Manchurian ash and Mongolian oak[J]. Photosynthetica,2021,59 (1):49−60. doi: 10.32615/ps.2020.084
[32] Barbour MM,Kaiser BN. The response of mesophyll conductance to nitrogen and water availability differs between wheat genotypes[J]. Plant Sci,2016,251:119−127. doi: 10.1016/j.plantsci.2016.03.012
[33] Tomás M,Medrano H,Brugnoli E,Escalona JM,Martorell S,et al. Variability of mesophyll conductance in grapevine cultivars under water stress conditions in relation to leaf anatomy and water use efficiency[J]. Aust J Grape Wine Res,2014,20 (2):272−280. doi: 10.1111/ajgw.12069
[34] 蒋高明,何维明. 毛乌素沙地若干植物光合作用、蒸腾作用和水分利用效率种间及生境间差异(英文)[J]. 植物学报,1999,41(10):1114−1124. Jiang GM,He WM. Species- and habitat-variability of photosynthesis,transpiration and water use efficiency of different plant species in Maowusu sand area[J]. Acta Botanica Sinica,1999,41 (10):1114−1124.
[35] Sáez PL,Galmés J,Ramírez CF,Poblete L,Rivera BK,et al. Mesophyll conductance to CO2 is the most significant limitation to photosynthesis at different temperatures and water availabilities in Antarctic vascular species[J]. Environ Exp Bot,2018,156:279−287. doi: 10.1016/j.envexpbot.2018.09.008
[36] Aranda I,Rodríguez-Calcerrada J,Robson TM,Cano FJ,Alté L,Sánchez-Gómez D. Stomatal and non-stomatal limitations on leaf carbon assimilation in beech (Fagus sylvatica L. ) seedlings under natural conditions[J]. For Syst,2012,21 (3):405−417.